Safety Data Sheet CALCE NATURALE NHL 3.5

Safety Data Sheet dated 12/7/2022 version 2

Attention: the numbering restarts from 1.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Identification of the substance:

Trade name: CALCE NATURALE NHL 3.5

Trade code: 1235

CAS number: 85117-09-5 EC number: 285-561-1

Registration Number 01-2119475523-36-xxxx

1.2. Relevant identified uses of the substance or mixture and uses advised against

Recommended use: Natural hydraulic lime

1.3. Details of the supplier of the safety data sheet

Company: FASSA Srl

Via Lazzaris, 3 - 31027 Spresiano (TV) - ITALY

Tel. +39 0422 7222 Fax +39 0422 887509

Responsable: laboratorio.spresiano@fassabortolo.it

1.4. Emergency telephone number

NHS 111

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Regulation (EC) n. 1272/2008 (CLP)

Skin Irrit. 2 Causes skin irritation.

Eye Dam. 1 Causes serious eye damage. STOT SE 3 May cause respiratory irritation.

Adverse physicochemical, human health and environmental effects:

No other hazards

2.2. Label elements

Regulation (EC) No 1272/2008 (CLP):

Pictograms and Signal Words

Hazard statements

H315 Causes skin irritation.

H318 Causes serious eye damage.H335 May cause respiratory irritation.

Precautionary statements

P101 If medical advice is needed, have product container or label at hand.

P102 Keep out of reach of children.

P261 Avoid breathing dust.

P280 Wear protective gloves and eye/face protection.
P302+P352 IF ON SKIN: Wash with plenty of soap and water.

P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.

P305+P351+P33 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy

to do. Continue rinsing.

 Date
 12/7/2022
 Production Name
 CALCE NATURALE NHL 3.5
 Page n. 1 of 10

P310 Immediately call a POISON CENTER/doctor.

P501 Dispose of contents/container in accordance with national regulation.

Contains:

Natural hydraulic lime

Special provisions according to Annex XVII of REACH and subsequent amendments:

None

2.3. Other hazards

This substance has no PBT, vPvB or endocrine disrupting properties

No other hazards

SECTION 3: Composition/information on ingredients

3.1. Substances

Substance Identifications: Natural hydraulic lime

CAS number: 85117-09-5 EC number: 285-561-1

Registration Number 01-2119475523-36-xxxx

3.2. Mixtures

N.A.

SECTION 4: First aid measures

4.1. Description of first aid measures

In case of skin contact:

Remove contaminated clothing immediatley and dispose off safely.

Areas of the body that have - or are only even suspected of having - come into contact with the product must be rinsed immediately with plenty of running water and possibly with soap.

OBTAIN IMMEDIATE MEDICAL ATTENTION.

In case of eyes contact:

After contact with the eyes, rinse with water with the eyelids open for a sufficient length of time, then consult an opthalmologist immediately.

Protect uninjured eye.

In case of Ingestion:

Do not induce vomiting, get medical attention showing the SDS and label hazardous.

In case of Inhalation:

Remove casualty to fresh air and keep warm and at rest.

In case of inhalation, consult a doctor immediately and show him packing or label.

4.2. Most important symptoms and effects, both acute and delayed

The symptoms and effects are as expected from the hazards as shown in section 2.

There are no known delayed effects. Consult a doctor for all exposures, unless minor.

4.3. Indication of any immediate medical attention and special treatment needed

In case of accident or unwellness, seek medical advice immediately (show directions for use or safety data sheet if possible).

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media:

CO2, powder extinguisher, foam, water spray.

Extinguishing media which must not be used for safety reasons:

Water iet.

5.2. Special hazards arising from the substance or mixture

Burning produces heavy smoke.

Do not inhale explosion and/or combustion gases (carbon monoxide, carbon dioxide, nitrogen oxides).

Avoid humidification.

5.3. Advice for firefighters

Use suitable breathing apparatus.

Collect contaminated fire extinguishing water separately. This must not be discharged into drains.

Move undamaged containers from immediate hazard area if it can be done safely.

GENERAL INFORMATION

Use water jets to cool the containers to prevent product decomposition and the development of substances potentially hazardous for health. Always wear full fire protection equipment.

EQUIPMENT

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 2 of 10

Normal fire fighting clothing, such as open-circuit compressed air breathing apparatus (EN 137), flame resistant suit (EN 469), flame resistant gloves (EN 659) and fire-fighter's boots (HO specification A29 or A30).

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Wear personal protection equipment.

Wear breathing apparatus if exposed to vapours/dusts/aerosols.

Provide adequate ventilation.

Use appropriate respiratory protection.

See protective measures under point 7 and 8.

Ensure adequate ventilation. Keep dust levels to a minimum. Keep unprotected persons away. Avoid contact with skin, eyes, and clothing – Wear suitable personal protective equipment (see section 8). Avoid inhalation of dust – ensure that sufficient ventilation or suitable respiratory protective equipment is used, wear suitable personal protective equipment (see section 8).

Contain the spillage. Keep the material dry if possible. Cover the area if possible to avoid unnecessary dust hazard. Avoid uncontrolled spills into watercourses and drains (pH increase). Any major spillage into watercourses must be reported to the environment agency or other regulatory body.

6.2. Environmental precautions

Do not allow to enter into soil/subsoil. Do not allow to enter into surface water or drains.

In case of gas escape or of entry into waterways, soil or drains, inform the responsible authorities.

6.3. Methods and material for containment and cleaning up

Material suitable for collection: inert absorbent material (e.g. sand, vermiculite)

After the product has been recovered, rinse the area and materials involved with water.

Retain contaminated washing water and dispose it.

In all cases avoid dust formation. Keep the material in a dry place if possible. Collect the product mechanically, without wetting. Use a vacuum cleaner, or shovel into bags.

6.4. Reference to other sections

See also section 8 and 13

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid contact with skin and eyes, inhalation of vapours and mists.

Use localized ventilation system.

Don't use empty container before they have been cleaned.

Before making transfer operations, assure that there aren't any incompatible material residuals in the containers.

Avoid contact with skin and eyes. Wear personal protective equipment (see section 8 of this safety data sheet). Do not wear contact lenses when handling this product. Minimise dust generation. Keep dust levels to a minimum. Cover dust sources, eliminate dust in handling points. Handling systems should preferably be enclosed. To reduce the risks to workers, when handling loads, follow the usual precautions laid down in Council Directive 90/269/EEC.

Avoid inhalation or ingestion and contact with skin and eyes. General occupational hygiene measures are required to ensure safe handling of the substance. These measures involve good personal hygiene and cleaning (e.g. regular cleaning with suitable cleaning devices); no drinking, eating and smoking in the workplace. Shower and change clothes at the end of each work shift. Do not wear contaminated clothing at home.

Advice on general occupational hygiene:

Contamined clothing should be changed before entering eating areas.

Do not eat or drink while working.

See also section 8 for recommended protective equipment.

7.2. Conditions for safe storage, including any incompatibilities

Keep away from food, drink and feed.

The substance must be stored in a dry place. Avoid contact with air or moisture. Bulk storage should be in purpose-designed silos. Keep away from acids, significant quantities of paper, straw, and nitro compounds. Keep out of reach of children. Do not use aluminium for transport or storage if there is a risk of contact with water.

Incompatible materials:

See chapter 10.5

Instructions as regards storage premises:

Adequately ventilated premises.

7.3. Specific end use(s)

Recommendation(s)

See chapter 1.2

Industrial sector specific solutions:

None in particular

See Annex 1 of this SDS for identified uses. For more information, refer to the relevant exposure scenario, available from your supplier/producer and in section 8 of this SDS.

SECTION 8: Exposure controls/personal protection

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 3 of 10

8.1. Control parameters

OEL	Country	Ceiling	Long Term	Long Term	Short Term	Short Term	Notes
Type			mg/m3	ppm	mg/m3	ppm	
EU			1.000		4.000		Calcium Hydroxide

8.2. Exposure controls

Provide adequate ventilation. Where reasonably practicable, this should be achieved by the use of local exhaust ventilation and good general extraction.

To control potential exposure, avoid generating dust. Appropriate protective equipment is also recommended. Eye protection equipment (e.g. goggles or wide-vision full goggles) must be worn, unless potential contact with the eye can be excluded by the nature and type of application (e.g. closed process). Additionally, appropriate face protection, protective clothing and safety shoes must be worn.

Refer to the relevant exposure scenario, given in the annex/available from your supplier.

APPROPRIATE TECHNICAL DEVICES

If user operations generate dust or fumes, use process enclosures, local ventilation systems, or other technical devices to keep airborne particle levels below recommended exposure limits.

ENVIRONMENTAL EXPOSURE CONTROLS

All ventilation systems should be filtered before being discharged into the atmosphere. Avoid releasing into the environment. Contain the spillage. Any major spillage into watercourses must be reported to the environmental protection agency or other regulatory body.

Detailed explanations of risk management measures to adequately control environmental exposure can be found in the relevant exposure scenario, available from your supplier. For further detailed information, refer to the annex of this SDS.

Eye protection:

Use close fitting safety goggles, don't use eye lens.

Protection for skin:

Use suitable clothing that provides complete protection to the skin according to activity and exposure (EN 14605/EN 13982), e.g. overall, apron, safety shoes, suitable clothing.

SKIN PROTECTION

Since calcium dihydroxide is classified as irritating to the skin, dermal exposure must be minimised as far as technically feasible.

Protective gloves (UNI EN 374 parts 1 and 2), standard protective work clothes fully covering skin, full length trousers, long sleeved overalls close fittings at openings and shoes resistant to caustic substances and avoiding dust penetration must be worn.

Protection for hands:

There is no material or combination of materials for gloves that can guarantee unlimited resistance to any individual chemical or combination of chemicals.

For prolonged or repeated handling, use chemical resistant gloves.

HAND PROTECTION

In the case of prolonged contact with the product, protect the hands with penetration-resistant work gloves (see standard EN 374). Work glove material must be chosen according to the process in which the product is being used and the products that may form. Latex gloves may cause sensitivity reactions.

Suitable materials for safety gloves (EN 374/EN 16523); NBR (Nitril rubber): thickness >= 0.4 mm; permeation time >= 480 min.; FKM (Fluorinated rubber): thickness >= 0.4 mm; permeation time >= 480 min.

The choice of suitable gloves does not only depend on the material, but also on other quality characteristics that vary from one manufacturer to another and on the manner and times according to which the mixture is used.

Respiratory protection:

If workers are exposed to concentrations above the exposure limit they must use appropriate, certified respirators.

RESPIRATORY PROTECTION

Local ventilation to keep levels below established threshold values is recommended. A suitable particle filter mask is also recommended, depending on the expected exposure levels; refer to the relevant exposure scenario given in the annex/available from your supplier.

As the use of adequate technical equipment must always take priority over personal protective equipment, make sure the workplace is well ventilated through effective local aspiration.

When choosing personal protective equipment, ask your chemical substance supplier for advice.

Personal protective equipment must be CE marked, confirming that it complies with current standards and regulations.

Particle filter device (EN 143): mask with filter P2.

Environmental exposure controls:

See point 6.2

Hygienic and Technical measures

See section 7.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance: Powder

Color: beige Odour: Odourless

Melting point / freezing point: 450 °C (842 °F) Initial boiling point and boiling range: N.D.

Flammability: N.A.

Upper/lower flammability or explosive limits: N.D.

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 4 of 10

Flash point: N.A.

Auto-ignition temperature: N.D. Decomposition temperature: N.D.

pH: >=12.00 <=13.00 (50% in water dispersion)

Kinematic viscosity: N.A.

Density: 2.7

Vapour density: N.A. Vapour pressure: N.D.

Solubility in water: partially soluble

Solubility in oil: N.A.

Partition coefficient (n-octanol/water): N.A.

Particle characteristics:

Based on the available data, the product does not contain nanomaterials.

9.2. Other information

Conductivity: N.D.

Explosive properties: N.D. Oxidizing properties: N.D. Evaporation rate: N.A.

SECTION 10: Stability and reactivity

10.1. Reactivity

Data not available.

Stable under normal conditions

10.2. Chemical stability

Stable under normal conditions

10.3. Possibility of hazardous reactions

Because of heat or fire the preparation can release carbon oxides and vapours which may be harmful to health.

Natural hydraulic lime reacts exothermically with acids to form salts. In the presence of moisture, it reacts with aluminium and brass to form hydrogen: $Ca(OH)2 + 2 AI + 6 H2O \rightarrow Ca(AI (OH)4)2 + 3 H2$

10.4. Conditions to avoid

Data not available.

Keep away from heat sources.

10.5. Incompatible materials

None in particular.

See chapter 10.3

10.6. Hazardous decomposition products

No hazardous decomposition products when stored and handled correctly.

See chapter 5.2

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Toxicological Information of the Substance

a) acute toxicity Not classified

Based on available data, the classification criteria are not met

LD50 Oral Rat > 2000 mg/kg

b) skin corrosion/irritation The product is classified: Skin Irrit. 2(H315) c) serious eye damage/irritation The product is classified: Eye Dam. 1(H318)

d) respiratory or skin sensitisation Not classified

Based on available data, the classification criteria are not met

e) germ cell mutagenicity Not classified

Based on available data, the classification criteria are not met

f) carcinogenicity Not classified

Based on available data, the classification criteria are not met

g) reproductive toxicity Not classified

Based on available data, the classification criteria are not met

i) STOT-repeated exposure Not classified

Based on available data, the classification criteria are not met

j) aspiration hazard Not classified

 Date
 12/7/2022
 Production Name
 CALCE NATURALE NHL 3.5
 Page n. 5 of 10

11.2. Information on other hazards

Endocrine disrupting properties:

This substance has no endocrine disrupting properties

Acute toxicity

Skin irritation/corrosion

Natural hydraulic lime is not acutely toxic. Study of the acute skin toxicity and inhalation effects of natural hydraulic lime has been considered scientifically unwarranted.

Classification for acute toxicity is not warranted.

Calcium dihydroxide is irritating to the skin. By read across, this result is also applicable to hydraulic lime. On the basis of experimental tests on similar substances, by read-across, natural hydraulic lime must be classified as irritating to the skin [skin irritation 2 (H315 - Causes skin irritation)].

Serious damage/irritation to eyes

Calcium hydroxide poses a risk of serious damage to eyes (eye irritation studies, in vivo, rabbit). By read across, these results are also applicable to natural hydraulic lime. On the basis of experimental tests on similar substances, by read-across, natural hydraulic lime must be classified as seriously irritating to the eyes [eye damage 1 (H318 - Causes serious eye damage)].

Sensitisation of the skin or respiratory system

No data available. Calcium magnesium oxide is not considered to be a skin sensitiser, based on the nature of the effect (pH shift) and the importance of calcium for human nutrition.

In addition, none of the constituent compounds of the other main components or impurities, e.g. calcium carbonate, calcium silicate, clay and calcined minerals, is known to pose any risk of sensitisation.

Classification for sensitisation is not warranted.

Mutagenicity

Bacterial reverse mutation tests (Ca(OH)2 and CaO, Ames test, OCDE 471): negative. Mammalian chromosome aberration test (Ca (OH) 2): negative.

By read across, these results are also applicable to natural hydraulic lime. None of the components of natural hydraulic lime is known to be genotoxic.

The pH effect of hydraulic lime does not pose any carcinogenic risk. Epidemiological data obtained on humans do not suggest any mutagenic potential for natural hydraulic lime. In conclusion, hydraulic lime has no genotoxic potential, including genetic mutations in bacteria. Classification for genotoxicity is not warranted.

Carcinogenicity

Calcium (administered as Ca-lactate) is not carcinogenic (experimental result rat). The pH effect of natural hydraulic lime does not pose a carcinogenic risk. Epidemiological data obtained on humans confirm that hydraulic lime is devoid of any carcinogenic potential. Classification for carcinogenicity is not warranted.

Reproductive toxicity

Calcium (administered as Ca-carbonate) is not toxic for reproduction (experimental studies on mice).

The pH effect does not pose any risk to reproduction. Epidemiological data obtained on humans confirm that natural hydraulic lime is devoid of any potential reproductive toxicity. Clinical studies on humans and animals confirm that natural hydraulic lime is devoid of any potential reproductive or developmental toxicity. See also the Scientific Committee on Human Nutrition (section 16.6). Hydraulic lime is not, therefore, toxic for reproduction and/or development.

Classification for reproductive toxicity according to Regulation (EC) 1272/2008 is not warranted.

STOT - single exposure

From human data based on calcium oxide and hydroxide, it can be deduced by read-across (considering the worst case) that natural hydraulic lime is irritating to the respiratory system. As gathered and assessed by SCOEL (Anonymous, 2008), based on human data, natural hydraulic lime is classified as an irritant to the respiratory system by the read-across method for CaO and Ca(OH)2 [STOT SE 3 (H335 - May cause respiratory irritation)]

STOT - repeated exposure

The toxicity of calcium via the oral route is demonstrated by the higher tolerable upper intake levels (UL) for adults determined by the Scientific Committee on Food (SCF) of UL = 2500 mg/d, corresponding to 36 mg/kg bw/d (70 kg person) for calcium. The toxicity of natural hydraulic lime via the dermal route is not considered as relevant in view of the anticipated insignificant absorption through the skin and due to the fact that local irritation is the primary health effect (pH shift). The toxicity of natural hydraulic lime by inhalation (local effect, irritation of the mucous membranes) has been determined by the Scientific Committee for Occupational Exposure Limits (SCOEL) on the basis of CaO and Ca(OH)2 as an 8 h TWA of 1 mg/m^3 of respirable dust (read across from CaO and Ca(OH)2 see section 8.1).

The classification of natural hydraulic lime on the basis of toxicity after prolonged exposure is not therefore required.

SECTION 12: Ecological information

Adopt good working practices, so that the product is not released into the environment.

12.1. Toxicity

Eco-Toxicological Information:

List of Eco-Toxicological properties of the product

Not classified for environmental hazards.

Based on available data, the classification criteria are not met

a) Aquatic acute toxicity: LC50 Freshwater fish 50.60000 mg/l 96h - calciumdihydroxide
a) Aquatic acute toxicity: LC50 Marine water fish 457.00000 mg/l 96h - calciumdihydroxide

a) Aquatic acute toxicity: EC50 Freshwater invertebrates 49.10000 mg/l 48h - calciumdihydroxide

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 6 of 10

- a) Aquatic acute toxicity: LC50 Marine water invertebrates 158.00000 mg/l 96h calciumdihydroxide
- e) Plant toxicity: EC50 Freshwater algae 184.57000 mg/l 72h calciumdihydroxide
- e) Plant toxicity: NOEC Freshwater algae 48.00000 mg/l 72h calciumdihydroxide
- b) Aquatic chronic toxicity: NOEC Marine water invertebrates 32.00000 mg/l 96h calciumdihydroxide
- d) Terrestrial toxicity: NOEC Soil macroorganisms 2000.00000 mg/kg calciumdihydroxide
- d) Terrestrial toxicity: NOEC Soil microorganisms 12000.00000 mg/kg calciumdihydroxide
- e) Plant toxicity: NOEC 1080.00000 mg/l calciumdihydroxide

12.2. Persistence and degradability

Natural hydraulic lime reacts with water and/or carbon dioxide to form calcium dihydroxide and/or calcium carbonate, respectively. These are moderately soluble substances and therefore have a low mobility in most soils.

ΝΔ

12.3. Bioaccumulative potential

N.A.

12.4. Mobility in soil

N.A.

12.5. Results of PBT and vPvB assessment

On the basis of available data, the product does not contain any PBT/vPvB in percentage $\geq 0.1\%$.

12.6 Endocrine disrupting properties

This substance has no endocrine disrupting properties

12.7 Other adverse effects

N.A.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Recover, if possible. Send to authorised disposal plants or for incineration under controlled conditions. In so doing, comply with the local and national regulations currently in force.

Do not allow it to enter drains or watercourses.

Processing, use of or contamination by this product may change the waste management options.

Dispose of containers contaminated by the product in accordance with local or national legal provisions.

SECTION 14: Transport information

Not classified as dangerous in the meaning of transport regulations.

14.1. UN number or ID number

N.A.

14.2. UN proper shipping name

N.A

14.3. Transport hazard class(es)

N.A.

14.4. Packing group

N.A.

14.5. Environmental hazards

N.A

14.6. Special precautions for user

N.A.

Road and Rail (ADR-RID) :

N.A

Air (IATA):

N.A.

Sea (IMDG) :

N.A.

14.7. Maritime transport in bulk according to IMO instruments

N.A.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Dir. 98/24/EC (Risks related to chemical agents at work)

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 7 of 10

Dir. 2000/39/EC (Occupational exposure limit values)

Directive 2010/75/EU

Regulation (EC) n. 1907/2006 (REACH)

Regulation (EC) n. 1272/2008 (CLP)

Regulation (EC) n. 790/2009 (ATP 1 CLP) and (EU) n. 758/2013

Regulation (EU) n. 2020/878

Regulation (EU) n. 286/2011 (ATP 2 CLP)

Regulation (EU) n. 618/2012 (ATP 3 CLP)

Regulation (EU) n. 487/2013 (ATP 4 CLP)

Regulation (EU) n. 944/2013 (ATP 5 CLP)

Regulation (EU) n. 605/2014 (ATP 6 CLP)

Regulation (EU) n. 2015/1221 (ATP 7 CLP)

Regulation (EU) n. 2016/918 (ATP 8 CLP)

Regulation (EU) n. 2016/1179 (ATP 9 CLP)

Regulation (EU) n. 2017/776 (ATP 10 CLP)

Regulation (EU) n. 2018/669 (ATP 11 CLP)

Regulation (EU) n. 2018/1480 (ATP 13 CLP)

Regulation (EU) n. 2019/521 (ATP 12 CLP)

Regulation (EU) n. 2020/217 (ATP 14 CLP)

Regulation (EU) n. 2020/1182 (ATP 15 CLP)

Regulation (EU) n. 2021/643 (ATP 16 CLP)

Restrictions related to the product or the substances contained according to Annex XVII Regulation (EC) 1907/2006 (REACH) and subsequent modifications:

Restrictions related to the product: None.

Restrictions related to the substances contained: None.

Provisions related to directive EU 2012/18 (Seveso III):

N.A

Regulation (EU) No 649/2012 (PIC regulation)

No substances listed

German Water Hazard Class.

Class 1: slightly hazardous for water.

SVHC Substances:

Code

On the basis of available data, the product does not contain any SVHC in percentage \geq 0.1%.

National regulations: Water Endangerment Class 1 (Germany)

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for the substance.

SECTION 16: Other information

Description

	D escription:	
H315	Causes skin irritation.	
H318	Causes serious eye damage.	
H335	May cause respiratory irritation.	
Code	Hazard class and hazard category	Description
3.2/2	Skin Irrit. 2	Skin irritation, Category 2
3.3/1	Eye Dam. 1	Serious eye damage, Category 1
3.8/3	STOT SE 3	Specific target organ toxicity — single exposure, Category 3

This document was prepared by a competent person who has received appropriate training.

Main bibliographic sources:

ECDIN - Environmental Chemicals Data and Information Network - Joint Research Centre, Commission of the European Communities

SAX's DANGEROUS PROPERTIES OF INDUSTRIAL MATERIALS - Eight Edition - Van Nostrand Reinold

Safety data sheets of raw materials suppliers.

CCNL - Appendix 1

The information contained herein is based on our state of knowledge at the above-specified date. It refers solely to the product indicated and constitutes no guarantee of particular quality.

It is the duty of the user to ensure that this information is appropriate and complete with respect to the specific use intended.

This MSDS cancels and replaces any preceding release.

Legend to abbreviations and acronyms used in the safety data sheet:

 Date
 12/7/2022
 Production Name
 CALCE NATURALE NHL 3.5
 Page n. 8 of 10

ACGIH: American Conference of Governmental Industrial Hygienists

ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road.

ATE: Acute Toxicity Estimate

ATEmix: Acute toxicity Estimate (Mixtures)

BCF: Biological Concentration Factor BEI: Biological Exposure Index

BOD: Biochemical Oxygen Demand

CAS: Chemical Abstracts Service (division of the American Chemical Society).

CAV: Poison Center

CE: European Community

CLP: Classification, Labeling, Packaging.

CMR: Carcinogenic, Mutagenic and Reprotoxic

COD: Chemical Oxygen Demand

COV: Volatile Organic Compound

CSA: Chemical Safety Assessment

CSR: Chemical Safety Report DNEL: Derived No Effect Level.

EC50: Half Maximal Effective Concentration

ECHA: European Chemicals Agency

EINECS: European Inventory of Existing Commercial Chemical Substances.

ES: Exposure Scenario

GefStoffVO: Ordinance on Hazardous Substances, Germany.

GHS: Globally Harmonized System of Classification and Labeling of Chemicals.

IARC: International Agency for Research on Cancer

IATA: International Air Transport Association.

IC50: half maximal inhibitory concentration

IMDG: International Maritime Code for Dangerous Goods.

KAFH: KAFH

KSt: Explosion coefficient.

LC50: Lethal concentration, for 50 percent of test population.

LD50: Lethal dose, for 50 percent of test population.

LDLo: Lethal Dose Low

LC0: Lethal concentration, for 0 percent of test population.

N.A.: Not Applicable N/A: Not Applicable

N/D: Not defined/ Not available

N.D.: Not available

NIOSH: National Institute for Occupational Safety and Health

NOAEL: No Observed Adverse Effect Level

OSHA: Occupational Safety and Health Administration.

PBT: Persistent, Bioaccumulative and Toxic

PGK: Packaging Instruction

PNEC: Predicted No Effect Concentration.

PSG: Passengers

RID: Regulation Concerning the International Transport of Dangerous Goods by Rail.

STEL: Short Term Exposure limit.

STOT: Specific Target Organ Toxicity.

TLV: Threshold Limiting Value.

TLV-TWA: Threshold Limit Value for the Time Weighted Average 8 hour day. (ACGIH Standard).

vPvB: Very Persistent, Very Bioaccumulative.

WGK: German Water Hazard Class.

Paragraphs modified from the previous revision:

- 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING
- 2. HAZARDS IDENTIFICATION
- 3. COMPOSITION/INFORMATION ON INGREDIENTS
- 4. FIRST AID MEASURES
- 5. FIRE-FIGHTING MEASURES
- 6. ACCIDENTAL RELEASE MEASURES
- 7. HANDLING AND STORAGE
- 8. EXPOSURE CONTROLS/PERSONAL PROTECTION
- 9. PHYSICAL AND CHEMICAL PROPERTIES
- 10. STABILITY AND REACTIVITY

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 9 of 10

- 11. TOXICOLOGICAL INFORMATION
- 12. ECOLOGICAL INFORMATION
- 13. DISPOSAL CONSIDERATIONS
- 14. TRANSPORT INFORMATION
- 15. REGULATORY INFORMATION

Date 12/7/2022 Production Name CALCE NATURALE NHL 3.5 Page n. 10 of 10

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

APPENDIX 1: EXPOSURE SCENARIOS

The current document includes all relevant occupational and environmental exposure scenarios (ES) for the production and use of natural hydraulic lime (NHL) as required under the REACH Regulation (Regulation (EC) No 1907/2006). For the development of the ES the Regulation and the relevant REACH Guidance have been considered. For the description of the covered uses and processes, the "R.12 – Use descriptor system" guidance (Version: 2, March 2010, ECHA-2010-G-05-EN), for the description and implementation of risk management measures (RMM) the "R.13 – Risk management measures" guidance (Version: 1.1, May 2008), for the occupational exposure estimation the "R.14 – Occupational exposure estimation" guidance (Version: 2, May 2010, ECHA-2010-G-09-EN) and for the actual environmental exposure assessment the "R.16 – Environmental Exposure Assessment" (Version: 2, May 2010, ECHA-10-G-06-EN) was used.

Methodology used for environmental exposure assessment

The environmental exposure scenarios only address the assessment at the local scale, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, for industrial and professional uses as any effects that might occur is expected to take place on a local scale. 1) Industrial uses (local scale)

The exposure and risk assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions in the industrial stages mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges. The exposure assessment for the aquatic environment only deals with the possible pH changes in STP effluent and surface water related to the OH- discharges at the local scale and is performed by assessing the resulting pH impact: the surface water pH should not increase above 9 (In general, most aquatic organisms can tolerate pH values in the range of 6-9).

Risk management measures related to the environment aim to avoid discharging natural hydraulic lime (NHL) solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. Discharges should be carried out such that pH changes in receiving surface waters are minimised. The effluent pH is normally measured and can be neutralised easily, as often required by national laws.

2) Professional uses (local scale)

The exposure and risk assessment is only relevant for the aquatic and terrestrial environment. The aquatic effect and risk assessment is determined by the pH effect. Nevertheless, the classical risk characterisation ratio (RCR), based on PEC (predicted environmental concentration) and PNEC (predicted no effect concentration) is calculated. The professional uses on a local scale refer to applications on agricultural or urban soil. The environmental exposure is assessed based on data and a modelling tool. The modelling FOCUS/ Exposit tool is used to assess terrestrial and aquatic exposure (typically conceived for biocidal applications).

Details and scaling approach indications are reported in the specific scenarios.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Methodology used for occupational exposure assessment

By definition an exposure scenario (ES) has to describe under which operational conditions (OC) and risk management measure (RMMs) the substance can be handled safely. This is demonstrated if the estimated exposure level is below the respective derived no-effect level (DNEL), which is expressed in the risk characterisation ratio (RCR). For workers, the repeated dose DNEL for inhalation as well as the acute DNEL for inhalation are based on the respective recommendations of the scientific committee on occupational exposure limits (SCOEL) being 1 mg/m³ and 4 mg/m³, respectively.

In cases where neither measured data nor analogous data are available, occupational exposure is assessed with the aid of a modelling tool. At the first tier screening level, the MEASE tool (http://www.ebrc.de/mease.html) is used to assess inhalation exposure according to the ECHA guidance (R.14).

Since the SCOEL recommendation refers to <u>respirable dust</u> while the exposure estimates in MEASE reflect the <u>inhalable</u> fraction, an additional safety margin is inherently included in the exposure scenarios below when MEASE has been used to derive exposure estimates.

Methodology used for consumer exposure assessment

By definition an ES has to describe under which conditions the substances, preparation or articles can be handled safely. In cases where neither measured data nor analogous data are available, exposure is assessed with the aid of a modelling tool.

For consumers, the repeated dose DNEL for inhalation as well as the acute DNEL for inhalation are based on the respective recommendations of the Scientific Committee on Occupational Exposure Limits (SCOEL), being 1 mg/m³ and 4 mg/m³, respectively.

For inhalation exposure to powders the data, derived from van Hemmen (van Hemmen, 1992: Agricultural pesticide exposure data bases for risk assessment. Rev Environ ContamToxicol. 126: 1-85.), has been used to calculate the inhalation exposure. The inhalation exposure for consumers is estimated at 15 μ g/hr or 0.25 μ g/min. For larger tasks the inhalation exposure is expected to be higher. A factor of 10 is suggested when the product amount exceeds 2.5 kg, resulting in the inhalation exposure of 150 μ g/hr. To convert these values in mg/m³ a default value of 1.25 m³/hr for the breathing volume under light working conditions will be assumed (van Hemmen, 1992) giving 12 μ g/m³ for small tasks and 120 μ g/m³ for larger tasks.

When the preparation or substance is applied in granular form or as tablets, reduced exposure to dust was assumed. To take this into account if data about particle size distribution and attrition of the granule are lacking, the model for powder formulations is used, assuming a reduction in dust formation by 10 % according to Becks and Falks (Manual for the authorisation of pesticides. Plant protection products. Chapter 4 Human toxicology; risk operator, worker and bystander, version 1.0., 2006).

For dermal exposure and exposure to the eye a qualitative approach has been followed, as no DNEL could be derived for this route due to the irritating properties of calcium oxide. Oral exposure was not assessed as this is not a foreseeable route of exposure regarding the uses addressed.

Since the SCOEL recommendation refers to respirable dust while the exposure estimates by the model from van Hemmen reflect the inhalable fraction, an additional safety margin is inherently included in the exposure scenarios below, i.e. the exposure estimates are very conservative.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10

O Printing Date: 12/10

The exposure assessment of natural hydraulic lime professional and industrial and consumer use is performed and organized. An overview of the scenarios and the coverage of substance life cycle is presented in Table 1.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

Table 1: Overview on exposure scenarios and coverage of substance life cycle

ES				enti: Ise:		Resulti ng life cycle stage	enumea	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	Linked to ider	category (SU)	Category (PC)	category (PROC)	ory (AC)	category (ERC)
9.1	Manufacture and industrial uses of aqueous solutions of lime substances	x	x	X		×	1	3; 1, 2a, 2b, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7, 12a, 12b, 10a, 10b, 11a, 11b
9.2	Manufacture and industrial uses of low dusty solids/powder s of lime substances	X	х	X		×	2	3; 1, 2a, 2b, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	1, 2, 3, 4, 5, 6, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27a, 27b	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7, 12a, 12b, 10a, 10b, 11a, 11b

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage	antilled	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	Limked to identil	category (SU)	Category (PC)	category (PROC)	ory (AC)	category (ERC)
9.3	Manufacture and industrial uses of medium dusty solids/powder s of lime substances		x	x		×	3	3; 1, 2a, 2b, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27a, 27b	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7, 12a, 12b, 10a, 10b, 11a, 11b
9.4	Manufacture and industrial uses of high dusty solids/powder s of lime substances	X	х	x		X	4	3; 1, 2a, 2b, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27a, 27b	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7, 12a, 12b, 10a, 11a

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage	Siltilled	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	Linked to identified	category (SU)	Category (PC)	category (PROC)	ory (AC)	category (ERC)
9.5	Manufacture and industrial uses of massive objects containing lime substances	x	x	X		X	5	3; 1, 2a, 2b, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	6, 14, 21, 22, 23, 24, 25	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7, 12a, 12b, 10a, 10b, 11a, 11b
9.6	Professional uses of aqueous solutions of lime substances		х	х		X	6	22; 1, 5, 6a, 6b, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	2, 3, 4, 5, 8a, 8b, 9, 10, 12, 13, 15, 16, 17, 18, 19	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	2, 8a, 8b, 8c, 8d, 8e, 8f

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage	яншеа	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	LIIIKEU to luër Hea	category (SU)	Category (PC)	category (PROC)	ory (AC)	category (ERC)
9.7	Professional uses of low dusty solids/powder s of lime substances		х	Х		X	7	22; 1, 5, 6a, 6b, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	2, 3, 4, 5, 8a, 8b, 9, 10, 13, 15, 16, 17, 18, 19, 21, 25, 26	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	2, 8a, 8b, 8c, 8d, 8e, 8f
9.8	Professional uses of medium dusty solids/powder s of lime substances		х	Х		×	8	22; 1, 5, 6a, 6b, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	2, 3, 4, 5, 8a, 8b, 9, 10, 13, 15, 16, 17, 18, 19, 25, 26	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	2, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage	minea	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	Limkea to laéntimea Heo	category (SU)	Category (PC)	(PROC)	ory (AC)	category (ERC)
9.9	Professional uses of high dusty solids/powder s of lime substances		х	х		Х	9	22; 1, 5, 6a, 6b, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24	1, 2, 3, 7, 8, 9a, 9b, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	2, 3, 4, 5, 8a, 8b, 9, 10, 13, 15, 16, 17, 18, 19, 25, 26	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	2, 8a, 8b, 8c, 8d, 8e, 8f
9.10	Professional use of lime substances in soil treatment		x	х			1 0	22	9b	5, 8b, 11, 26		2, 8a, 8b, 8c, 8d, 8e, 8f

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage		Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	- Limkea to laémimea Hea	category (SU)	Category (PC)	(PROC)	ory (AC)	category (ERC)
9.11	Professional uses of articles/containers containing lime substances			x		×	1	22; 1, 5, 6a, 6b, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24		0, 21, 24, 25	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13	10a, 11a, 11b, 12a, 12b
9.12	Consumer use of building and construction material (DIY)				X		х					8

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti		Resulti ng life cycle stage	enumea	Sector of use	Chemical Product	Process	Article categ	Environmen tal release
number	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	- Limked to idéntimed Hea	category (SU)	Category (PC)	category (PROC)	ory (AC)	category (ERC)
9.13	Consumer use of CO ₂ absorbent in breathing apparatuses				X		х	21	9b, 9a			8
9.14	Consumer use of garden lime/fertilizer				х		х	21	2			8e
9.15	Consumer use of lime substances as water treatment chemicals in aquaria				х		x	21	20, 12			8

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 12/10

ES				enti use:		Resulti ng life cycle stage		Sector of use	Chemical Product	Process	Article categ	Environmen tal release
	Exposure scenario title	Manufacture	Formulation	End use	Consumer	Service life (for articles)	Linkea to idéntimea Heo	category (SU)	Category (PC)	(PROC)	ory (AC)	category (ERC)
9.16	Consumer use of cosmetics containing lime substances				х		x	21	20, 37			8

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.1: Manufacture and industrial uses of aqueous solutions of lime substances

Solutions o	f lime substances	
Exposure Scena	ario Format (1) addressing uses carried	out by workers
1. Title		
Free short title	Manufacture and industrial uses of a	aqueous solutions of lime substances
Systematic title based on use descriptor	SU15, SU16, SU17, SU18 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC PC36, PC37, PC AC1, AC2, AC3, AC4, AC5, AC6	SU7, SU8, SU9, SU10, SU11, SU12, SU13, SU14, b, SU19, SU20, SU23, SU24 C12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, C28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, C38, PC39, PC40 6, AC7, AC8, AC10, AC11, AC13 cs are given in Section 2 below)
Processes, tasks and/or activities covered	Processes, tasks and/or activities cov	ered are described in Section 2 below.
Assessment Method	The assessment of inhalation exposure is ba	ased on the exposure estimation tool MEASE.
2. Operational c	onditions and risk management measur	es
PROC/ERC	REACH definition	Involved tasks
PROC 1	Use in closed process, no likelihood of exposure	
PROC 2	Use in closed, continuous process with occasional controlled exposure	
PROC 3	Use in closed batch process (synthesis or formulation)	
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises	
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)	
PROC 7	Industrial spraying	
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities	
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities	Further information is provided in the ECHA Guidance on information requirements and chemical safety assessment, Chapter R.12: Use
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)	descriptor system (ECHA-2010-G-05-EN).
PROC 10	Roller application or brushing	
PROC 12	Use of blowing agents in manufacture of foam	
PROC 13	Treatment of articles by dipping and pouring	
PROC 14	Production of preparations or articles by tabletting, compression, extrusion, pelletisation	
PROC 15	Use as laboratory reagent	
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected	
PROC 17	Lubrication at high energy conditions and in partly open process	
PROC 18	Greasing at high energy conditions	

FASSA BORUOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 19	Hand-mixing with intimate contact and only PPE available
ERC 1-7, 12	Manufacture, formulation and all types of industrial uses
ERC 10, 11	Wide-dispersive outdoor and indoor use of long- life articles and materials

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential. The spraying of aqueous solutions (PROC7 and 11) is assumed to be involved with a medium emission.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 7	not restricted		aqueous solution	medium
All other applicable PROCs	not restricted		aqueous solution	very low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. Professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure
PROC 7	≤ 240 minutes
All other applicable PROCs	(

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Since aqueous solutions are not used in hot-metallurgical processes, operational conditions (e.g. process temperature and process pressure) are not considered relevant for occupational exposure assessment of the conducted processes.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 7	Any potentially required separation of workers from the emission source is indicated above under "Frequency and	local exhaust ventilation	78 %	-
PROC 19	duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive	not applicable	na	-

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

All other	
applicable PROCs	١

pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.

not required

na

-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation				
PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 7	FFP1 mask	APF=4	Since natural hydraulic lime (NHL) is considered as irritating to skin, the use of protective gloves is mandatory for all process steps.	Eye protection equipment (e.g. goggles or visors) must be worn, unless potential contact with the eye can be excluded by the nature and
All other applicable PROCs	not required	na		type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure

Amounts used

The daily and annual amount per site (for point sources) is not considered to be the main determinant for environmental exposure.

Frequency and duration of use

Intermittent (< 12 time per year) or continuous use/release

Environment factors not influenced by risk management

Flow rate of receiving surface water: 18000 m³/day

Other given operational conditions affecting environmental exposure

Effluent discharge rate: 2000 m³/day

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Risk management measures related to the environment aim to avoid discharging lime solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. In general discharges should be carried out such that pH changes in receiving surface waters are minimised (e.g. through neutralisation). In general most aquatic organisms can tolerate pH values in the range of 6-9. This is also reflected in the description of standard OECD tests with aquatic organisms. The justification for this risk management measure can be found in the introduction section.

Conditions and measures related to waste

Solid industrial waste of lime should be reused or discharged to the industrial wastewater and further neutralized if needed.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19	MEASE	<1 mg/m³ (0.001 – 0.66)	irritating to skin, minimised as far as f for dermal effects h	dic lime (NHL) is considered as dermal exposure has to be technically feasible. A DNEL as not been derived. Thus, not assessed in this exposure

Environmental exposure

The environmental exposure assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions of natural hydraulic lime (NHL) in the different life-cycle stages (production and use) mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges, being the toxicity of Ca2+ is expected to be negligible compared to the (potential) pH effect. Only the local scale is being addressed, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, both for production and industrial use as any effects that might occur would be expected to take place on a local scale. The high water solubility and very low vapour pressure indicate that natural hydraulic lime (NHL) will be found predominantly in water. Significant emissions or exposure to air are not expected due to the low vapour pressure of lime substance. Significant emissions or exposure to the terrestrial environment are not expected either for this exposure scenario. The exposure assessment for the aquatic environment will therefore only deal with the possible pH changes in STP effluent and surface water related to the OH- discharges at the local scale. The exposure assessment is approached by assessing the resulting pH impact: the surface water pH should not increase above 9.

Environmental emissions	The production of natural hydraulic lime (NHL) can potentially result in an aquatic emission and locally increase the natural hydraulic lime (NHL) concentration and affect the pH in the aquatic environment. When the pH is not neutralised, the discharge of effluent from natural hydraulic lime (NHL) production sites may impact the pH in the receiving water. The pH of effluents is normally measured very frequently and can be neutralised easily as often required by national laws.
Exposure concentration in waste water treatment plant (W WTP)	Waste water from natural hydraulic lime (NHL) production is an inorganic wastewater stream and therefore there is no biological treatment. Therefore, wastewater streams from natural hydraulic lime (NHL) production sites will normally not be treated in biological waste water treatment plants (WWTPs), but can be used for pH control of acid wastewater streams that are treated in biological WWTPs.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Exposure concentration in aquatic pelagic compartment	When natural hydraulic lime (NHL) is emitted to surface water, sorption to particulate matter and sediment will be negligible. When lime is rejected to surface water, the pH may increase, depending on the buffer capacity of the water. The higher the buffer capacity of the water, the lower the effect on pH will be. In general the buffer capacity preventing shifts in acidity or alkalinity in natural waters is regulated by the equilibrium between carbon dioxide (CO ₂), the bicarbonate ion (HCO3-) and the carbonate ion (CO32-).
Exposure concentration in sediments	The sediment compartment is not included in this ES, because it is not considered relevant for lime substance: when natural hydraulic lime (NHL) is emitted to the aquatic compartment, sorption of to sediment particles is negligible.
Exposure concentrations in soil and groundwater	The terrestrial compartment is not included in this exposure scenario, because it is not considered to be relevant.
Exposure concentration in atmospheric compartment	The air compartment is not included in this CSA because it is considered not relevant for lime substance: when emitted to air as an aerosol in water, natural hydraulic lime (NHL) is neutralised as a result of its reaction with CO2 (or other acids), into HCO3- and Ca2+. Subsequently, the salts (e.g. calcium(bi)carbonate) are washed out from the air and thus the atmospheric emissions of neutralised natural hydraulic lime (NHL) largely end up in soil and water.
Exposure concentration relevant for the food chain (secondary poisoning)	Bioaccumulation in organisms is not relevant for lime substance: a risk assessment for secondary poisoning is therefore not required.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Occupational exposure

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

Environmental exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

If a site does not comply with the conditions stipulated in the safe use ES, it is recommended to apply a tiered approach to perform a more site-specific assessment. For that assessment, the following stepwise approach is recommended.

Tier 1: retrieve information on effluent pH and the contribution of the natural hydraulic lime (NHL) on the resulting pH. Should the pH be above 9 and be predominantly attributable to lime, then further actions are required to demonstrate safe use.

Tier 2a: retrieve information on receiving water pH after the discharge point. The pH of the receiving water shall not exceed the value of 9. If the measures are not available, the pH in the river can be calculated as follows:

$$pHriver = Log \left[\frac{Qeffluent * 10^{pHeffluent} + Qriverups tream * 10^{pHups tream}}{Qriverups tream + Qeffluent} \right]$$
(Eq. 1)

Where:

Q effluent refers to the effluent flow (in m³/day)

Q river upstream refers to the upstream river flow (in

m³/day) pH effluent refers to the pH of the effluent

pH upstream river refers to the pH of the river upstream of the discharge point

Please note that initially, default values can be used:

- Q river upstream flows: use the 10th of existing measurements distribution or use default value of 18000 m³/dav
- Q effluent: use default value of 2000 m³/day
- The upstream pH is preferably a measured value. If not available, one can assume a neutral pH of 7 if this
 can be justified.

Such equation has to be seen as a worst case scenario, where water conditions are standard and not case specific.

Tier 2b: Equation 1 can be used to identify which effluent pH causes an acceptable pH level in the receiving body. In order to do so, pH of the river is set at value 9 and pH of the effluent is calculated accordingly (using default values as reported previously, if necessary). As temperature influences lime solubility, pH effluent might require to be adjusted on a case-by-case basis. Once the maximum admissible pH value in the effluent is established, it is assumed that the OH- concentrations are all dependent on lime discharge and that there is no buffer capacity conditions to consider (this is a unrealistic worst case scenario, which can be modified where information is available). Maximum load of lime that can be annually rejected without negatively affecting the pH of the receiving water is calculated assuming chemical equilibrium. OH- expressed as moles/litre are multiplied by average flow of the effluent and then divided by the molar mass of the lime substance.

Tier 3: measure the pH in the receiving water after the discharge point. If pH is below 9, safe use is reasonably demonstrated and the ES ends here. If pH is found to be above 9, risk management measures have to be implemented: the effluent has to undergo neutralisation, thus ensuring safe use of lime during production or use phase.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10

Retrieve information or effluent pH if predominantly Compliance check with ES successfully completed SAFE USE pH <9 TIER 2 Calculate receiving water pH based on dilution pHriver = log)/Qeffluent * 10*pHeffluent + iverupstream (m3/d) effluent (m3/d) Qriverupstream * 10*pHupstreamriver(/ (Qriverupstream+Qeffuent]) is receiving Compliance check with ES SAFE USE successfully completed <80 Calculate max admissible effluent pH based on Retrieve information on dilution lime rejection concentration (pttriver-3) - log()Qeffluent * 10*ptteffluent + & use conversion table Qriverupstream * 10*pHupstreamriver[/ |Qriverupstream+Qeffuent|| Compliance check with ES SAFE USE or is pH shift successfully completed acceptable? TIER 3 Measure pH in receiving water & dependency on other sources than lime Compliance check with E5 successfully completed Is pH-di? SAFE USE RMM: neutralise Compliance check with ES the effluent successfully completed

ES number 9.2: Manufacture and industrial uses of low dusty solids/powders of lime substances

Exposure Scenario Format (1) addressing uses carried out by workers

Printing Date: 12/10

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

1. Title			
Free short title	Manufacture and industrial uses of low o	dusty solids/powders of lime substances	
Systematic title based on use descriptor	SU3, SU1, SU2a, SU2b, SU4, SU5, SU6a, SU6b, SU7, SU8, SU9, SU10, SU11, SU12, SU13, SU14, SU15, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC34, PC35, PC36, PC37, PC38, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)		
Processes, tasks and/or activities covered	Processes, tasks and/or activities cove	ered are described in Section 2 below.	
Assessment Method	The assessment of inhalation exposure is ba	sed on the exposure estimation tool MEASE.	
2. Operational con	ditions and risk management measures	5	
PROC/ERC	REACH definition	Involved tasks	
PROC 1	Use in closed process, no likelihood of exposure	Further information is provided in the ECHA Guidance on information requirements and	
PROC 2	Use in closed, continuous process with occasional controlled exposure	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-	
PROC 3	Use in closed batch process (synthesis or formulation)	EN).	
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises		
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)	or	
PROC 6	Calendering operations		
PROC 7	Industrial spraying		
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities		
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities		
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)		
PROC 10	Roller application or brushing		
PROC 13	Treatment of articles by dipping and pouring		
PROC 14	Production of preparations or articles by tabletting, compression, extrusion, pelletisation		
PROC 15	Use as laboratory reagent		
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected		
PROC 17	Lubrication at high energy conditions and in partly open process		
PROC 18	Greasing at high energy conditions		
PROC 19	Hand-mixing with intimate contact and only PPE available		
PROC 21	Low energy manipulation of substances bound in materials and/or articles		

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 22	Potentially closed processing operations with minerals/metals at elevated temperature Industrial setting		
PROC 23	Open processing and transfer operations with minerals/metals at elevated temperature		
PROC 24	High (mechanical) energy work-up of substances bound in materials and/or articles		
PROC 25	Other hot work operations with metals		
PROC 26	Handling of solid inorganic substances at ambient temperature		
PROC 27a	Production of metal powders (hot processes)		
PROC 27b	Production of metal powders (wet processes)		
ERC 1-7, 12	Manufacture, formulation and all types of industrial uses		
ERC 10, 11	Wide-dispersive outdoor and indoor use of longlife articles and materials		

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 22, 23, 25, 27a	not res	stricted	solid/powder, molten	high
PROC 24	not restricted		solid/powder	high
All other applicable PROCs	not restricted		solid/powder	low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. Professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure
PROC 22	≤ 240 minutes
All other applicable PROCs	480 minutes (not restricted)

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally no required in the processes.

Technical conditions and measures to control dispersion from source towards the worker				
PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 7, 17, 18	Any potentially required separation of workers from the emission source is indicated	general ventilation	17 %	-
PROC 19		not applicable	na	-
PROC 22, 23, 24, 25, 26, 27a	above under "Frequency and	local exhaust ventilation	78 %	-
All other applicable PROCs	duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	not required	na	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 22, 24, 27a	FFP1 mask	APF=4		Eye protection equipment (e.g. goggles or visors) must
All other applicable PROCs	not required	na	Since natural hydraulic lime (NHL) is considered as irritating to skin, the use of protective gloves is mandatory for all process steps.	be worn, unless potential contact with the eye can be excluded by the nature and type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

FASSA BORUOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure

Amounts used

The daily and annual amount per site (for point sources) is not considered to be the main determinant for environmental exposure

Frequency and duration of use

Intermittent (< 12 time per year) or continuous use/release

Environment factors not influenced by risk management

Flow rate of receiving surface water: 18000 m³/day

Other given operational conditions affecting environmental exposure

Effluent discharge rate: 2000 m³/day

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Risk management measures related to the environment aim to avoid discharging lime solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. In general discharges should be carried out such that pH changes in receiving surface waters are minimised (e.g. through neutralisation). In general most aquatic organisms can tolerate pH values in the range of 6-9. This is also reflected in the description of standard OECD tests with aquatic organisms. The justification for this risk management measure can be found in the introduction section.

Conditions and measures related to waste

Solid industrial waste of lime should be reused or discharged to the industrial wastewater and further neutralized if needed.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27a, 27b	MEASE	<1 mg/m³ (0.01 – 0.83)	as irritating to skin, de minimised as far as tecl	
Environmental emissions				

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The environmental exposure assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions of natural hydraulic lime (NHL) in the different life-cycle stages (production and use) mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges, being the toxicity of Ca2+ is expected to be negligible compared to the (potential) pH effect. Only the local scale is being addressed, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, both for production and industrial use as any effects that might occur would be expected to take place on a local scale. The high water solubility and very low vapour pressure indicate that natural hydraulic lime (NHL) will be found predominantly in water. Significant emissions or exposure to air are not expected due to the low vapour pressure of natural hydraulic lime (NHL). Significant emissions or exposure to the terrestrial environment are not expected either for this exposure scenario. The exposure assessment for the aquatic environment will therefore only deal with the possible pH changes in STP effluent and surface water related to the OH-discharges at the local scale. The exposure assessment is approached by assessing the resulting pH impact: the surface water pH should not increase above 9.

water pri should not increase above 5.				
Environmental emissions	The production of natural hydraulic lime (NHL) can potentially result in an aquatic emission and locally increase the calciumconcentrations and affect the pH in the aquatic environment. When the pH is not neutralised, the discharge of effluent from natural hydraulic lime (NHL) production sites may impact the pH in the receiving water. The pH of effluents is normally measured very frequently and can be neutralised easily as often required by national laws.			
Exposure concentration in waste water treatment plant (WWTP)	Waste water from natural hydraulic lime (NHL) production is an inorganic wastewater stream and therefore there is no biological treatment. Therefore, wastewater streams from natural hydraulic lime (NHL) production sites will normally not be treated in biological waste water treatment plants (WWTPs), but can be used for pH control of acid wastewater streams that are treated in biological WWTPs.			
Exposure concentration in aquatic pelagic compartment	When natural hydraulic lime (NHL) is emitted to surface water, sorption to particulate matter and sediment will be negligible. When lime is rejected to surface water, the pH may increase, depending on the buffer capacity of the water. The higher the buffer capacity of the water, the lower the effect on pH will be. In general the buffer capacity preventing shifts in acidity or alkalinity in natural waters is regulated by the equilibrium between carbon dioxide (CO2), the bicarbonate ion (HCO3-) and the carbonate ion (CO32-).			

Exposure concentration in sediments	The sediment compartment is not included in this ES, because it is not considered relevant for natural hydraulic lime (NHL): when natural hydraulic lime (NHL) is emitted to the aquatic compartment, sorption to sediment particles is negligible.	
Exposure concentrations in soil and groundwater	The terrestrial compartment is not included in this exposure scenario, because it is not considered to be relevant.	
Exposure concentration in atmospheric compartment	The air compartment is not included in this CSA because it is considered not relevant for natural hydraulic lime (NHL): when emitted to air as an aerosol in water, natural hydraulic lime (NHL) is neutralised as a result of its reaction with CO2 (or other acids), into HCO3- and Ca2+. Subsequently, the salts (e.g. calcium(bi)carbonate) are washed out from the air and thus the atmospheric emissions of neutralised natural hydraulic lime (NHL) largely end up in soil and water.	
Exposure concentration relevant for the food chain (secondary poisoning)	Bioaccumulation in organisms is not relevant for natural hydraulic lime (NHL): a risk assessment for secondary poisoning is therefore not required.	
4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES		
Occupational exposure		

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

Environmental exposure

If a site does not comply with the conditions stipulated in the safe use ES, it is recommended to apply a tiered approach to perform a more site-specific assessment. For that assessment, the following stepwise approach is recommended.

Tier 1: retrieve information on effluent pH and the contribution of the natural hydraulic lime (NHL) on the resulting pH. Should the pH be above 9 and be predominantly attributable to lime, then further actions are required to demonstrate safe use.

Tier 2a: retrieve information on receiving water pH after the discharge point. The pH of the receiving water shall not exceed the value of 9. If the measures are not available, the pH in the river can be calculated as follows:

$$pHriver = Log \underbrace{\frac{Qeffluent * 10^{pHeffluent} + Qriverups tream * 10^{pHups tream}}{Qriverups tream + Qeffluent}}_{Qriverups tream + Qeffluent}$$
(Eq. 1)

Where:

Q effluent refers to the effluent flow (in m³/day)

Q river upstream refers to the upstream river flow (in

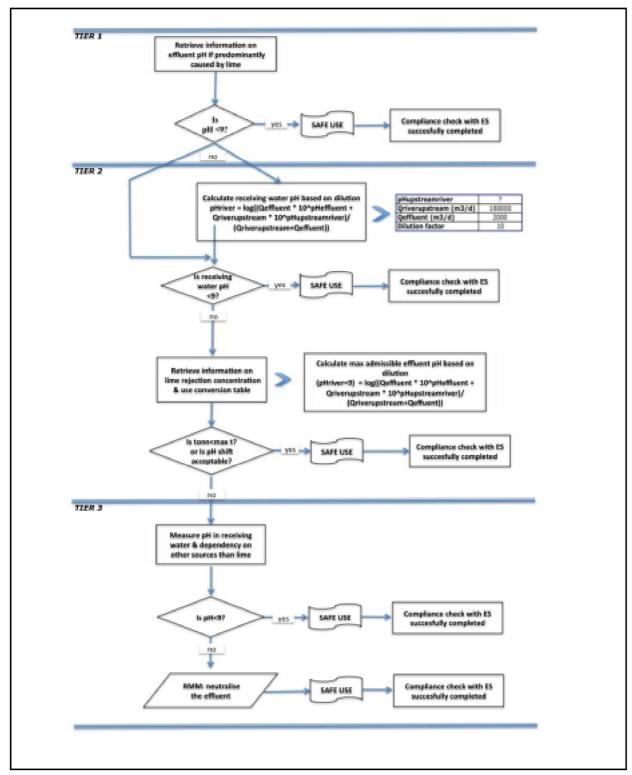
m³/day) pH effluent refers to the pH of the effluent

pH upstream river refers to the pH of the river upstream of the discharge point

Please note that initially, default values can be used:

- Q river upstream flows: use the 10th of existing measurements distribution or use default value of 18000 m³/dav
- Q effluent: use default value of 2000 m³/day
- The upstream pH is preferably a measured value. If not available, one can assume a neutral pH of 7 if this
 can be justified.

Such equation has to be seen as a worst case scenario, where water conditions are standard and not case specific.


Tier 2b: Equation 1 can be used to identify which effluent pH causes an acceptable pH level in the receiving body. In order to do so, pH of the river is set at value 9 and pH of the effluent is calculated accordingly (using default values as reported previously, if necessary). As temperature influences lime solubility, pH effluent might require to be adjusted on a case-by-case basis. Once the maximum admissible pH value in the effluent is established, it is assumed that the OH-concentrations are all dependent on lime discharge and that there is no buffer capacity conditions to consider (this is a unrealistic worst case scenario, which can be modified where information is available). Maximum load of lime that can be annually rejected without negatively affecting the pH of the receiving water is calculated assuming chemical equilibrium. OH- expressed as moles/litre are multiplied by average flow of the effluent and then divided by the molar mass of the natural hydraulic lime (NHL).

Tier 3: measure the pH in the receiving water after the discharge point. If pH is below 9, safe use is reasonably demonstrated and the ES ends here. If pH is found to be above 9, risk management measures have to be implemented: the effluent has to undergo neutralisation, thus ensuring safe use of lime during production or use phase.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10
Printing Date: 12/10

ES number 9.3: Manufacture and industrial uses of medium dusty solids/powders of lime substances

Exposure Scenario Format (1) addressing uses carried out by workers

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

1. Title			
Free short title	Manufacture and industrial uses of medium dusty solids/powders of lime substances		
Systematic title based on use descriptor	SU3, SU1, SU2a, SU2b, SU4, SU5, SU6a, SU6b, SU7, SU8, SU9, SU10, SU11, SU12, SU13, SU14, SU15, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC34, PC35, PC36, PC37, PC38, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)		
Processes, tasks and/or activities covered	Processes, tasks and/or activities covered are described in Section 2 below.		
Assessment Method	The assessment of inhalation exposure is based on the exposure estimation tool MEASE.		
2. Operational con	ditions and risk management measures		
PROC/ERC	REACH definition	Involved tasks	
PROC 1	Use in closed process, no likelihood of exposure	Further information is provided in the ECHA Guidance on information requirements and	
PROC 2	Use in closed, continuous process with occasional controlled exposure	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-	
PROC 3	Use in closed batch process (synthesis or formulation)	EN).	
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises		
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)		
PROC 7	Industrial spraying		
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities		
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities		
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)		
PROC 10	Roller application or brushing		
PROC 13	Treatment of articles by dipping and pouring		
PROC 14	Production of preparations or articles by tabletting, compression, extrusion, pelletisation		
PROC 15	Use as laboratory reagent		
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected		
PROC 17	Lubrication at high energy conditions and in partly open process		
PROC 18	Greasing at high energy conditions		
PROC 19	Hand-mixing with intimate contact and only PPE available		
PROC 22	Potentially closed processing operations with minerals/metals at elevated temperature Industrial setting		

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

_			
PROC 23	Open processing and transfer operations with minerals/metals at elevated temperature		
PROC 24	High (mechanical) energy work-up of substances bound in materials and/or articles		
PROC 25	Other hot work operations with metals		
PROC 26	Handling of solid inorganic substances at ambient temperature		
PROC 27a	Production of metal powders (hot processes)		
PROC 27b	Production of metal powders (wet processes)		
ERC 1-7, 12	Manufacture, formulation and all types of industrial uses		
ERC 10, 11	Wide-dispersive outdoor and indoor use of longlife articles and materials		

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 22, 23, 25, 27a	not restricted		solid/powder, molten	high
PROC 24	not restricted		solid/powder	high
All other applicable PROCs	not restricted		solid/powder	medium

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. Professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure	
PROC 7, 17, 18, 19, 22	≤ 240 minutes	
All other applicable PROCs	480 minutes (not restricted)	

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 1, 2, 15, 27b	Any potentially required separation	not required	na	-
PROC 3, 13, 14	of workers from the emission	general ventilation	17 %	-
PROC 19	source is indicated	not applicable	na	-
All other applicable PROCs	above under "Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	local exhaust ventilation	78 %	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 4, 5, 7, 8a, 8b, 9, 10, 16, 17, 18, 19, 22, 24, 27a	FFP1 mask	APF=4		Eye protection equipment (e.g. goggles or visors) must
All other applicable PROCs	not required	na	Since natural hydraulic lime (NHL) is considered as irritating to skin, the use of protective gloves is mandatory for all process steps.	be worn, unless potential contact with the eye can be excluded by the nature and type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

2.2 Control of environmental exposure

Amounts used

The daily and annual amount per site (for point sources) is not considered to be the main determinant for environmental exposure.

Frequency and duration of use

Intermittent (< 12 time per year) or continuous use/release

Environment factors not influenced by risk management

Flow rate of receiving surface water: 18000 m³/day

Other given operational conditions affecting environmental exposure

Effluent discharge rate: 2000 m³/day

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Risk management measures related to the environment aim to avoid discharging lime solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. In general discharges should be carried out such that pH changes in receiving surface waters are minimised (e.g. through neutralisation). In general most aquatic organisms can tolerate pH values in the range of 6-9. This is also reflected in the description of standard OECD tests with aquatic organisms. The justification for this risk management measure can be found in the introduction section.

Conditions and measures related to waste

Solid industrial waste of lime should be reused or discharged to the industrial wastewater and further neutralized if needed.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27a, 27b	MEASE	< 1 mg/m³ (0.01 – 0.88)	as irritating to skin, de minimised as far as tec	

Environmental emissions

The environmental exposure assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions of natural hydraulic lime (NHL) in the different life-cycle stages (production and use) mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges, being the toxicity of Ca2+ is expected to be negligible compared to the (potential) pH effect. Only the local scale is being addressed, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, both for production and industrial use as any effects that might occur would be expected to take place on a local scale. The high water solubility and very low vapour pressure indicate that natural hydraulic lime (NHL) will be found predominantly in water. Significant emissions or exposure to air are not expected due to the low vapour pressure of natural hydraulic lime (NHL). Significant emissions or exposure to the terrestrial environment are not expected either for this exposure scenario. The exposure assessment for the aquatic environment will therefore only deal with the possible pH changes in STP effluent and surface water related to the OH-discharges at the local scale. The exposure assessment is approached by assessing the resulting pH impact: the surface water pH should not increase above 9.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental emissions	The production of natural hydraulic lime (NHL) can potentially result in an aquatic emission and locally increase the calcium concentrations and affect the pH in the aquatic environment. When the pH is not neutralised, the discharge of effluent from natural hydraulic lime (NHL) production sites may impact the pH in the receiving water. The pH of effluents is normally measured very frequently and can be neutralised easily as often required by national laws.
Exposure concentration in waste water treatment plant (WWTP)	Waste water from natural hydraulic lime (NHL) production is an inorganic wastewater stream and therefore there is no biological treatment. Therefore, wastewater streams from natural hydraulic lime (NHL) production sites will normally not be treated in biological waste water treatment plants (WWTPs), but can be used for pH control of acid wastewater streams that are treated in biological WWTPs.

Exposure concentration in aquatic pelagic compartment	When natural hydraulic lime (NHL) is emitted to surface water, sorption to particulate matter and sediment will be negligible. When lime is rejected to surface water, the pH may increase, depending on the buffer capacity of the water. The higher the buffer capacity of the water, the lower the effect on pH will be. In general the buffer capacity preventing shifts in acidity or alkalinity in natural waters is regulated by the equilibrium between carbon dioxide (CO2), the bicarbonate ion (HCO3-) and the carbonate ion (CO32-).
Exposure concentration in sediments	The sediment compartment is not included in this ES, because it is not considered relevant for natural hydraulic lime (NHL): when natural hydraulic lime (NHL) is emitted to the aquatic compartment, sorption of to sediment particles is negligible.
Exposure concentrations in soil and groundwater	The terrestrial compartment is not included in this exposure scenario, because it is not considered to be relevant.
Exposure concentration in atmospheric compartment	The air compartment is not included in this CSA because it is considered not relevant for natural hydraulic lime (NHL): when emitted to air as an aerosol in water, natural hydraulic lime (NHL) is neutralised as a result of its reaction with CO2 (or other acids), into HCO3- and Ca2+. Subsequently, the salts (e.g. calcium(bi)carbonate) are washed out from the air and thus the atmospheric emissions of neutralised natural hydraulic lime (NHL)largely end up in soil and water.
Exposure concentration relevant for the food chain (secondary poisoning)	Bioaccumulation in organisms is not relevant for natural hydraulic lime (NHL): a risk assessment for secondary poisoning is therefore not required.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Occupational exposure

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

Environmental exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

If a site does not comply with the conditions stipulated in the safe use ES, it is recommended to apply a tiered approach to perform a more site-specific assessment. For that assessment, the following stepwise approach is recommended.

Tier 1: retrieve information on effluent pH and the contribution of the natural hydraulic lime (NHL) on the resulting pH. Should the pH be above 9 and be predominantly attributable to lime, then further actions are required to demonstrate safe use.

Tier 2a: retrieve information on receiving water pH after the discharge point. The pH of the receiving water shall not exceed the value of 9. If the measures are not available, the pH in the river can be calculated as follows:

$$pHriver = Log \left[\frac{Qeffluent * 10^{pHeffluent} + Qriverups tream * 10^{pHups tream}}{Qriverups tream + Qeffluent} \right]$$
(Eq. 1)

Where:

Q effluent refers to the effluent flow (in m³/day)

Q river upstream refers to the upstream river flow (in

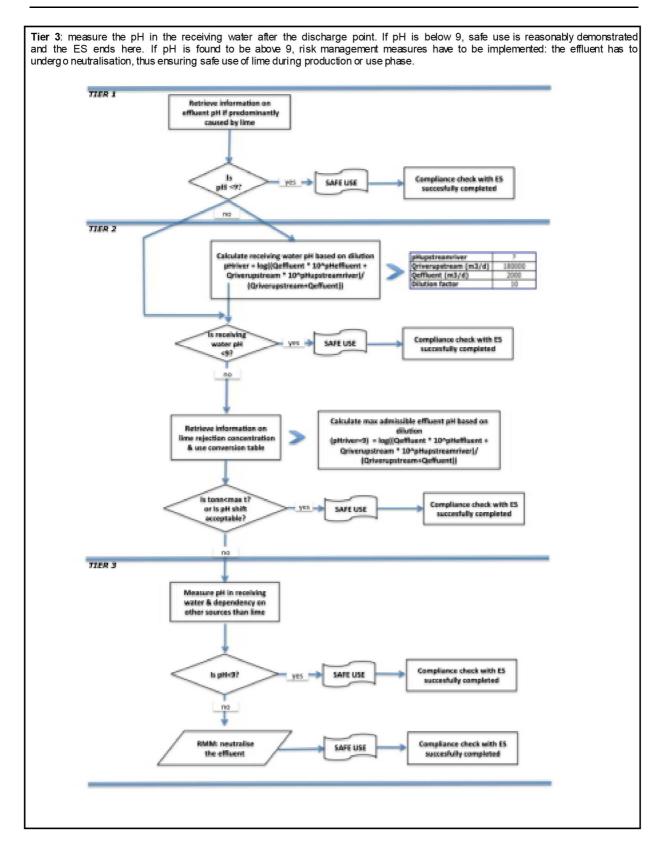
m³/day) pH effluent refers to the pH of the effluent

pH upstream river refers to the pH of the river upstream of the discharge point

Please note that initially, default values can be used:

- Q river upstream flows: use the 10th of existing measurements distribution or use default value of 18000 m³/day
- Q effluent: use default value of 2000 m³/day
- The upstream pH is preferably a measured value. If not available, one can assume a neutral pH of 7 if this
 can be justified.

Such equation has to be seen as a worst case scenario, where water conditions are standard and not case specific.


Tier 2b: Equation 1 can be used to identify which effluent pH causes an acceptable pH level in the receiving body. In order to do so, pH of the river is set at value 9 and pH of the effluent is calculated accordingly (using default values as reported previously, if necessary). As temperature influences lime solubility, pH effluent might require to be adjusted on a case-by-case basis. Once the maximum admissible pH value in the effluent is established, it is assumed that the OH-concentrations are all dependent on lime discharge and that there is no buffer capacity conditions to consider (this is a unrealistic worst case scenario, which can be modified where information is available). Maximum load of lime that can be annually rejected without negatively affecting the pH of the receiving water is calculated assuming chemical equilibrium. OH- expressed as moles/litre are multiplied by average flow of the effluent and then divided by the molar mass of the natural hydraulic lime (NHL).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.4: Manufacture and industrial uses of high dusty solids/powders of lime substances

	Format (1) addressing uses carried ou	ıt by workers		
1. Title				
Free short title	Manufacture and industrial uses of high	dusty solids/powders of lime substances		
Systematic title based on use descriptor	SU3, SU1, SU2a, SU2b, SU4, SU5, SU6a, SU6b, SU7, SU8, SU9, SU10, SU11, SU12, SU13, SU14, SU15, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, PC36, PC37, PC38, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)			
Processes, tasks and/or activities covered	Processes, tasks and/or activities cove			
Assessment Method	The assessment of inhalation exposure is ba	sed on the exposure estimation tool MEASE.		
2. Operational con	ditions and risk management measures	5		
PROC/ERC	REACH definition	Involved tasks		
PROC 1	Use in closed process, no likelihood of exposure	Further information is provided in the ECHA Guidance on information requirements and		
PROC 2	Use in closed, continuous process with occasional controlled exposure	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-		
PROC 3	Use in closed batch process (synthesis or formulation)	EN).		
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises			
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)			
PROC 7	Industrial spraying			
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities			
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities			
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)			
PROC 10	Roller application or brushing			
PROC 13	Treatment of articles by dipping and pouring			
PROC 14	Production of preparations or articles by tabletting, compression, extrusion, pelletisation			
PROC 15	Use as laboratory reagent			
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected			
PROC 17	Lubrication at high energy conditions and in partly open process			
PROC 18	Greasing at high energy conditions			

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 19	Hand-mixing with intimate contact and only PPE available			
PROC 22	Potentially closed processing operations with minerals/metals at elevated			
PROC 22	temperature Industrial setting			
PROC 23	Open processing and transfer operations with			
	minerals/metals at elevated temperature			
PROC 24	High (mechanical) energy work-up of substances bound in materials and/or			
	articles			
PROC 25	Other hot work operations with metals			
PROC 26	Handling of solid inorganic substances at			
	ambient temperature			
PROC 27a	Production of metal powders (hot processes)			
PROC 27b	Production of metal powders (wet processes)			
ERC 1-7, 12	Manufacture, formulation and all types of			
,	industrial uses			
ERC 10, 11	Wide-dispersive outdoor and indoor use of			
	longlife articles and materials			

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 22, 23, 25, 27a	not restricted		solid/powder, molten	high
All other applicable PROCs	not restricted		solid/powder	high

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. Professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure		
PROC 7, 8a, 17, 18, 19, 22	≤ 240 minutes		
All other applicable PROCs	480 minutes (not restricted)		

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker					
PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information	
PROC 1	Any potentially required separation	not required	na	-	
PROC 2, 3	of workers from the emission source is indicated above under "Frequency and duration of exposure. A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	emission	general ventilation	17 %	-
PROC 7		integrated local exhaust ventilation	84 %	-	
PROC 19		not applicable	na	-	
All other applicable PROCs		local exhaust ventilation	78 %		

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 1, 2, 3, 23, 25, 27b	not required	na		Eye protection equipment (e.g.
PROC 4, 5, 7, 8a, 8b, 9, 17, 18,	FFP2 mask	APF=10	Since natural hydraulic lime (NHL) is considered as irritating	goggles or visors) must be worn, unless potential contact with
PROC 10, 13, 14, 15, 16, 22, 24, 26, 27a	FFP1 mask	APF=4		the eye can be
PROC 19	FFP3 mask	APF=20	to skin, the use of protective gloves is mandatory for all process steps.	nature and type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

FISSA BURUULO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure

Amounts used

The daily and annual amount per site (for point sources) is not considered to be the main determinant for environmental exposure

Frequency and duration of use

Intermittent (< 12 time per year) or continuous use/release

Environment factors not influenced by risk management

Flow rate of receiving surface water: 18000 m³/day

Other given operational conditions affecting environmental exposure

Effluent discharge rate: 2000 m³/day

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Risk management measures related to the environment aim to avoid discharging lime solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. In general discharges should be carried out such that pH changes in receiving surface waters are minimised (e.g. through neutralisation). In general most aquatic organisms can tolerate pH values in the range of 6-9. This is also reflected in the description of standard OECD tests with aquatic organisms. The justification for this risk management measure can be found in the introduction section.

Conditions and measures related to waste

Solid industrial waste of lime should be reused or discharged to the industrial wastewater and further neutralized if needed.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27a, 27b	MEASE	<1 mg/m³ (0.01 – 0.96)	as irritating to skin, de minimised as far as tecl	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The environmental exposure assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions of natural hydraulic lime (NHL) in the different life-cycle stages (production and use) mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges, being the toxicity of Ca2+ is expected to be negligible compared to the (potential) pH effect. Only the local scale is being addressed, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, both for production and industrial use as any effects that might occur would be expected to take place on a local scale. The high water solubility and very low vapour pressure indicate that natural hydraulic lime (NHL) will be found predominantly in water. Significant emissions or exposure to air are not expected due to the low vapour pressure of natural hydraulic lime (NHL). Significant emissions or exposure to the terrestrial environment are not expected either for this exposure scenario. The exposure assessment for the aquatic environment will therefore only deal with the possible pH changes in STP effluent and surface water related to the OHdischarges at the local scale. The exposure assessment is approached by assessing the resulting pH impact: the surface water pH should not increase above 9.

Environmental emissions	The production of natural hydraulic lime (NHL) can potentially result in an aquatic emission and locally increase the calciumconcentrations and affect the pH in the aquatic environment. When the pH is not neutralised, the discharge of effluent from natural hydraulic lime (NHL) production sites may impact the pH in the receiving water. The pH of effluents is normally measured very frequently and can be neutralised easily as often required by national laws.
Exposure concentration in waste water treatment plant (WWTP)	Waste water from natural hydraulic lime (NHL) production is an inorganic wastewater stream and therefore there is no biological treatment. Therefore, wastewater streams from natural hydraulic lime (NHL) production sites will normally not be treated in biological waste water treatment plants (WWTPs), but can be used for pH control of acid wastewater streams that are treated in biological WWTPs.
Exposure concentration in aquatic pelagic compartment	When natural hydraulic lime (NHL) is emitted to surface water, sorption to particulate matter and sediment will be negligible. When lime is rejected to surface water, the pH may increase, depending on the buffer capacity of the water. The higher the buffer capacity of the water, the lower the effect on pH will be. In general the buffer capacity preventing shifts in acidity or alkalinity in natural waters is regulated by the equilibrium between carbon dioxide (CO2), the bicarbonate ion (HCO3-) and the carbonate ion (CO32-).

Exposure concentration in	The sediment compartment is not included in this ES, because it is not considered relevant for natural hydraulic lime (NHL): when natural hydraulic lime (NHL) is emitted to the aquatic
sediments	compartment, sorption of to sediment particles is negligible.
Exposure	The terrestrial compartment is not included in this exposure scenario, because it is not considered
concentrations in	to be relevant.
soil and groundwater	
Exposure concentration in atmospheric compartment	The air compartment is not included in this CSA because it is considered not relevant for natural hydraulic lime (NHL): when emitted to air as an aerosol in water, natural hydraulic lime (NHL) is neutralised as a result of its reaction with CO2 (or other acids), into HCO3- and Ca2+. Subsequently, the salts (e.g. calcium(bi)carbonate) are washed out from the air and thus the atmospheric emissions of neutralised natural hydraulic lime (NHL)largely end up in soil and water.
Exposure concentration relevant for the food chain (secondary poisoning)	Bioaccumulation in organisms is not relevant for natural hydraulic lime (NHL): a risk assessment for secondary poisoning is therefore not required.
4. Guidance to DU	to evaluate whether he works inside the boundaries set by the FS

Occupational exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

Environmental exposure

If a site does not comply with the conditions stipulated in the safe use ES, it is recommended to apply a tiered approach to perform a more site-specific assessment. For that assessment, the following stepwise approach is recommended.

Tier 1: retrieve information on effluent pH and the contribution of the natural hydraulic lime (NHL) on the resulting pH. Should the pH be above 9 and be predominantly attributable to lime, then further actions are required to demonstrate safe use.

Tier 2a: retrieve information on receiving water pH after the discharge point. The pH of the receiving water shall not exceed the value of 9. If the measures are not available, the pH in the river can be calculated as follows:

$$pHriver = Log \left[\frac{Qeffluent * 10^{pHeffluent} + Qriverups tream * 10^{pHups tream}}{Qriverups tream + Qeffluent} \right]$$
(Eq. 1)

Where:

Q effluent refers to the effluent flow (in m³/day)

Q river upstream refers to the upstream river flow (in

m³/day) pH effluent refers to the pH of the effluent

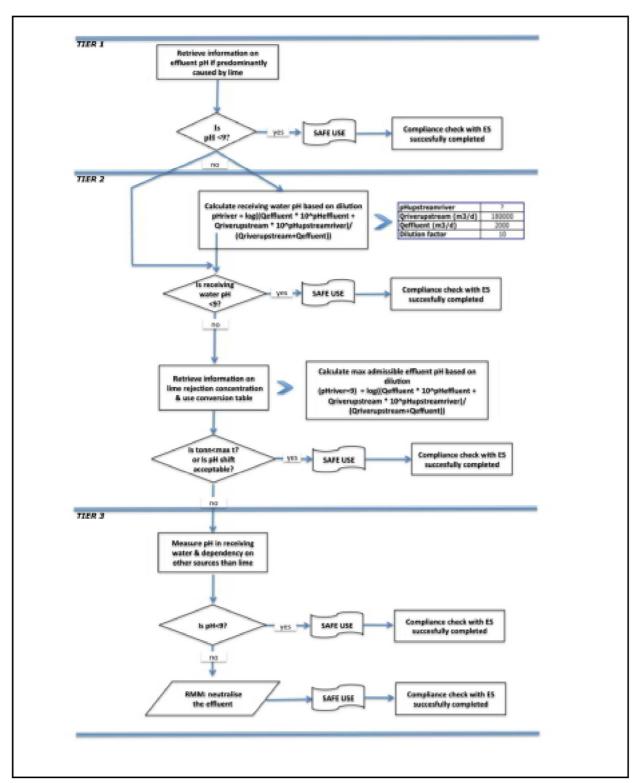
pH upstream river refers to the pH of the river upstream of the discharge point

Please note that initially, default values can be used:

- Q river upstream flows: use the 10th of existing measurements distribution or use default value of 18000 m³/dav
- Q effluent: use default value of 2000 m³/day
- The upstream pH is preferably a measured value. If not available, one can assume a neutral pH of 7 if this
 can be justified.

Such equation has to be seen as a worst case scenario, where water conditions are standard and not case specific.

Tier 2b: Equation 1 can be used to identify which effluent pH causes an acceptable pH level in the receiving body. In order to do so, pH of the river is set at value 9 and pH of the effluent is calculated accordingly (using default values as reported previously, if necessary). As temperature influences lime solubility, pH effluent might require to be adjusted on a case-by-case basis. Once the maximum admissible pH value in the effluent is established, it is assumed that the OH-concentrations are all dependent on lime discharge and that there is no buffer capacity conditions to consider (this is a unrealistic worst case scenario, which can be modified where information is available). Maximum load of lime that can be annually rejected without negatively affecting the pH of the receiving water is calculated assuming chemical equilibrium. OH- expressed as moles/litre are multiplied by average flow of the effluent and then divided by the molar mass of the natural hydraulic lime (NHL).


Tier 3: measure the pH in the receiving water after the discharge point. If pH is below 9, safe use is reasonably demonstrated and the ES ends here. If pH is found to be above 9, risk management measures have to be implemented: the effluent has to undergo neutralisation, thus ensuring safe use of lime during production or use phase.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10

Printing Date: 12/10

ES number 9.5: Manufacture and industrial uses of massive objects containing lime substances

Exposure Scenario Format (1) addressing uses carried out by workers

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

1. Title					
Free short title	Manufacture and industrial uses of massive objects containing lime substances				
Systematic title based on use descriptor	SU3, SU1, SU2a, SU2b, SU4, SU5, SU6a, SU6b, SU7, SU8, SU9, SU10, SU11, SU12, SU13, SU14, SU15, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, PC36, PC37, PC38, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)				
Processes, tasks and/or activities covered	Processes, tasks and/or activities cove	ered are described in Section 2 below.			
Assessment Method	The assessment of inhalation exposure is ba	sed on the exposure estimation tool MEASE.			
2. Operational con	ditions and risk management measures				
PROC/ERC	REACH definition Involved tasks				
PROC 6	Calendering operations				
PROC 14	Production of preparations or articles by tabletting, compression, extrusion, pelletisation				
PROC 21	Low energy manipulation of substances bound in materials and/or articles				
PROC 22	Potentially closed processing operations with minerals/metals at elevated temperature Industrial setting	Further information is provided in the ECHA			
PROC 23	Open processing and transfer operations with minerals/metals at elevated temperature	Guidance on information requirements and chemical safety assessment, Chapter R.12:			
PROC 24	High (mechanical) energy work-up of substances bound in materials and/or articles	 Use descriptor system (ECHA-2010-G-05- EN). 			
PROC 25	Other hot work operations with metals				
ERC 1-7, 12	Manufacture, formulation and all types of industrial uses				
ERC 10, 11	Wide-dispersive outdoor and indoor use of longlife articles and materials				

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 22, 23,25	not restricted		massive objects, molten	high
PROC 24	not restricted		massive objects	high
All other applicable PROCs	not res	not restricted		very low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. Professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Frequency and duration	n of use/exposure
PROC	Duration of exposure
PROC 22	≤ 240 minutes
All other applicable PROCs	480 minutes (not restricted)

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 6, 14, 21	Any potentially required separation	not required	na	-
PROC 22, 23, 24, 25	of workers from the emission source is indicated above under "Frequency and duration of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	local exhaust ventilation	78 %	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation					
PROC	Specification of respiratory protective equipment (RPE)	,	Specification of gloves	Further personal protective equipment (PPE)	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 22	FFP1 mask	APF=4	Since natural hydraulic lime (NHL) is	Eye protection equipment (e.g. goggles or visors) must be worn, unless potential contact with the eye can be
All other applicable PROCs	not required	na	considered as irritating to skin, the use of protective gloves is mandatory for all process steps.	excluded by the nature and type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure

Amounts used

The daily and annual amount per site (for point sources) is not considered to be the main determinant for environmental exposure

Frequency and duration of use

Intermittent (< 12 time per year) or continuous use/release

Environment factors not influenced by risk management

Flow rate of receiving surface water: 18000 m³/day

Other given operational conditions affecting environmental exposure

Effluent discharge rate: 2000 m³/day

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Risk management measures related to the environment aim to avoid discharging lime solutions into municipal wastewater or to surface water, in case such discharges are expected to cause significant pH changes. Regular control of the pH value during introduction into open waters is required. In general discharges should be carried out such that pH changes in receiving surface waters are minimised (e.g. through neutralisation). In general most aquatic organisms can tolerate pH values in the range of 6-9. This is also reflected in the description of standard OECD tests with aquatic organisms. The justification for this risk management measure can be found in the introduction section.

Conditions and measures related to waste

Solid industrial waste of lime should be reused or discharged to the industrial wastewater and further neutralized if needed.

3. Exposure estimation and reference to its source

Occupational exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 6, 14, 21, 22, 23, 24, 25	MEASE	< 1 mg/m³ (0.01 – 0.44)	as irritating to skin, de minimised as far as tecl	

Environmental emissions

The environmental exposure assessment is only relevant for the aquatic environment, when applicable including STPs/WWTPs, as emissions of natural hydraulic lime (NHL) in the different life-cycle stages (production and use) mainly apply to (waste) water. The aquatic effect and risk assessment only deal with the effect on organisms/ecosystems due to possible pH changes related to OH- discharges, being the toxicity of Ca2+ is expected to be negligible compared to the (potential) pH effect. Only the local scale is being addressed, including municipal sewage treatment plants (STPs) or industrial waste water treatment plants (WWTPs) when applicable, both for production and industrial use as any effects that might occur would be expected to take place on a local scale. The high water solubility and very low vapour pressure indicate that natural hydraulic lime (NHL) will be found predominantly in water. Significant emissions or exposure to air are not expected due to the low vapour pressure of natural hydraulic lime (NHL). Significant emissions or exposure to the terrestrial environment are not expected either for this exposure scenario. The exposure assessment for the aquatic environment will therefore only deal with the possible pH changes in STP effluent and surface water related to the OH-discharges at the local scale. The exposure assessment is approached by assessing the resulting pH impact: the surface water pH should not increase above 9.

water pri eriodia net iner	water pri should not increase above s.			
Environmental emissions	The production of natural hydraulic lime (NHL) can potentially result in an aquatic emission and locally increase the calciumconcentrations and affect the pH in the aquatic environment. When the pH is not neutralised, the discharge of effluent from natural hydraulic lime (NHL) production sites may impact the pH in the receiving water. The pH of effluents is normally measured very frequently and can be neutralised easily as often required by national laws.			
Exposure concentration in waste water treatment plant (WWTP)	Waste water from natural hydraulic lime (NHL) production is an inorganic wastewater stream and therefore there is no biological treatment. Therefore, wastewater streams from natural hydraulic lime (NHL) production sites will normally not be treated in biological waste water treatment plants (WWTPs), but can be used for pH control of acid wastewater streams that are treated in biological WWTPs.			
Exposure concentration in aquatic pelagic compartment	When natural hydraulic lime (NHL) is emitted to surface water, sorption to particulate matter and sediment will be negligible. When lime is rejected to surface water, the pH may increase, depending on the buffer capacity of the water. The higher the buffer capacity of the water, the lower the effect on pH will be. In general the buffer capacity preventing shifts in acidity or alkalinity in natural waters is regulated by the equilibrium between carbon dioxide (CO2), the bicarbonate ion (HCO3-) and the carbonate ion (CO32-).			
Exposure concentration in sediments	The sediment compartment is not included in this ES, because it is not considered relevant for natural hydraulic lime (NHL): when natural hydraulic lime (NHL) is emitted to the aquatic compartment, sorption of to sediment particles is negligible.			
Exposure concentrations in soil and groundwater	The terrestrial compartment is not included in this exposure scenario, because it is not considered to be relevant.			
Exposure concentration in atmospheric compartment	The air compartment is not included in this CSA because it is considered not relevant for natural hydraulic lime (NHL): when emitted to air as an aerosol in water, natural hydraulic lime (NHL) is neutralised as a result of its reaction with CO2 (or other acids), into HCO3- and Ca2+. Subsequently, the salts (e.g. calcium(bi)carbonate) are washed out from the air and thus the atmospheric emissions of neutralised natural hydraulic lime (NHL)largely end up in soil and water.			

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Exposure concentration relevant for the food chain (secondary poisoning)

Bioaccumulation in organisms is not relevant for natural hydraulic lime (NHL): a risk assessment for secondary poisoning is therefore not required.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Occupational exposure

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

Environmental exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

If a site does not comply with the conditions stipulated in the safe use ES, it is recommended to apply a tiered approach to perform a more site-specific assessment. For that assessment, the following stepwise approach is recommended.

Tier 1: retrieve information on effluent pH and the contribution of the natural hydraulic lime (NHL) on the resulting pH. Should the pH be above 9 and be predominantly attributable to lime, then further actions are required to demonstrate safe use

Tier 2a: retrieve information on receiving water pH after the discharge point. The pH of the receiving water shall not exceed the value of 9. If the measures are not available, the pH in the river can be calculated as follows:

$$pHriver = Log \left[\frac{Qeffluent * 10^{pHeffluent} + Qriverups tream * 10^{pHups tream}}{Qriverups tream + Qeffluent} \right]$$
(Eq 1)

Where:

Q effluent refers to the effluent flow (in m³/day)

Q river upstream refers to the upstream river flow (in

m³/day) pH effluent refers to the pH of the effluent

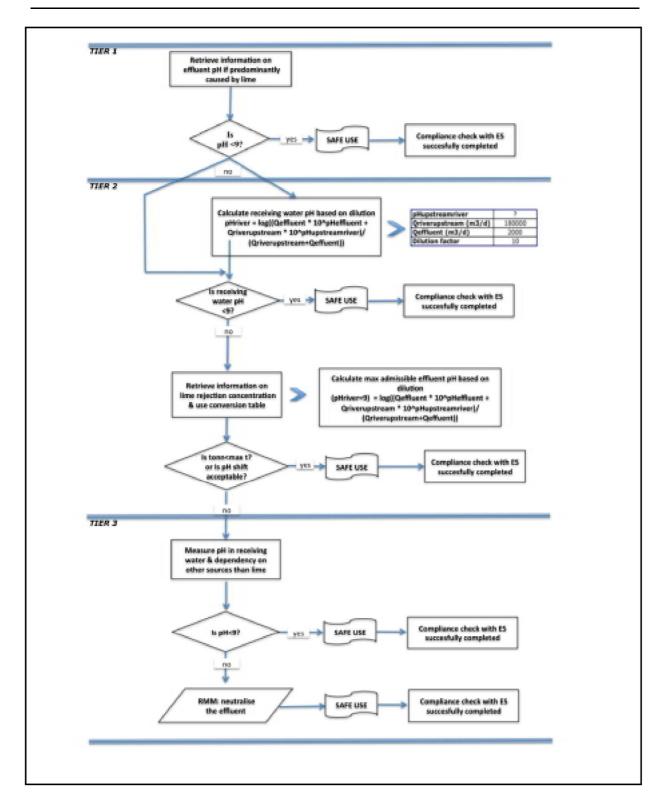
pH upstream river refers to the pH of the river upstream of the discharge point

Please note that initially, default values can be used:

- Q river upstream flows: use the 10th of existing measurements distribution or use default value of 18000 m³/day
- Q effluent: use default value of 2000 m³/day
- The upstream pH is preferably a measured value. If not available, one can assume a neutral pH of 7 if this can be justified.

Such equation has to be seen as a worst case scenario, where water conditions are standard and not case specific.

Tier 2b: Equation 1 can be used to identify which effluent pH causes an acceptable pH level in the receiving body. In order to do so, pH of the river is set at value 9 and pH of the effluent is calculated accordingly (using default values as reported previously, if necessary). As temperature influences lime solubility, pH effluent might require to be adjusted on a case-by-case basis. Once the maximum admissible pH value in the effluent is established, it is assumed that the OH-concentrations are all dependent on lime discharge and that there is no buffer capacity conditions to consider (this is a unrealistic worst case scenario, which can be modified where information is available). Maximum load of lime that can be annually rejected without negatively affecting the pH of the receiving water is calculated assuming chemical equilibrium. OH- expressed as moles/litre are multiplied by average flow of the effluent and then divided by the molar mass of the natural hydraulic lime (NHL).


Tier 3: measure the pH in the receiving water after the discharge point. If pH is below 9, safe use is reasonably demonstrated and the ES ends here. If pH is found to be above 9, risk management measures have to be implemented: the effluent has to undergo neutralisation, thus ensuring safe use of lime during production or use phase.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.6: Professional uses of aqueous solutions of lime substances

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Exposure Scenario	Format (1) addressing uses carried ou	ut by workers	
1. Title			
Free short title	Professional uses of aqueous	s solutions of lime substances	
Systematic title based on use descriptor	SU22, SU1, SU5, SU6a, SU6b, SU7, SU10, SU11, SU12, SU13, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, PC36, PC37, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)		
Processes, tasks and/or activities covered	,	ered are described in Section 2 below.	
Assessment Method	· ·	pased on the exposure estimation tool MEASE. The t is based on FOCUS-Exposit.	
2. Operational con	ditions and risk management measures	5	
PROC/ERC	REACH definition	Involved tasks	
PROC 2	Use in closed, continuous process with occasional controlled exposure		
PROC 3	Use in closed batch process (synthesis or formulation)		
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises		
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)		
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities		
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities	5 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)	Further information is provided in the ECHA Guidance on information requirements and chemical safety assessment, Chapter R.12:	
PROC 10	Roller application or brushing	Use descriptor system (ECHA-2010-G-05- EN).	
PROC 11	Non industrial spraying		
PROC 12	Use of blowing agents in manufacture of foam		
PROC 13	Treatment of articles by dipping and pouring		
PROC 15	Use as laboratory reagent		
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected		
PROC 17	Lubrication at high energy conditions and in partly open process		
PROC 18	Greasing at high energy conditions		
PROC 19	Hand-mixing with intimate contact and only PPE available		
ERC2, ERC8a, ERC8b, ERC8c, ERC8d, ERC8e, ERC8f	Wide dispersive indoor and outdoor use of reactive substances or processing aids in open systems	Natural hydraulic lime is applied in numerous cases of wide dispersive uses: agricultural, forestry, fish and shrimps farming, soil treatment and environmental protection.	

FASSA BURIULO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential. The spraying of aqueous solutions (PROC7 and 11) is assumed to be involved with a medium emission.

PROC	Use in preparation	Content in preparation	Physical form	Emission potential
All applicable PROCs	not restricted		aqueous solution	very low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure
PROC 11	≤ 240 minutes
All other applicable PROCs	480 minutes (not restricted)

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Since aqueous solutions are not used in hot-metallurgical processes, operational conditions (e.g. process temperature and process pressure) are not considered relevant for occupational exposure assessment of the conducted processes.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 19	Separation of workers from the emission source is generally	not applicable	na	-
All other applicable PROCs	not required in the conducted processes.	not required	na	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measu	Conditions and measures related to personal protection, hygiene and health evaluation			
PROC	Specification of respiratory protective equipment (RPE)	,	Specification of gloves	Further personal protective equipment (PPE)

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

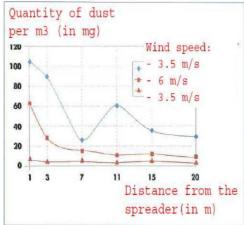
Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 11	FFP3 mask	APF=20	Since natural hydraulic lime (NHL) is classified as irritating to skin, the use of protective equipment goggles or must be worm potential continued by and type of a classed by and type of a classed by	equipment goggles or must be worn, u	equipment (goggles or vis must be worn, unle	equipment (e.g.
PROC 17	FFP1 mask	APF=4		the eye can be excluded by the nature and type of application (i.e. closed process).		
All other applicable PROCs	not required	na	gloves is mandatory for all process steps.	Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.		

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.


The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure – only relevant for agricultural soil protection

Product characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 2,420 kg/ha

Frequency and duration of use

1 day/year (one application per year). Multiple applications during the year are allowed, provided the total yearly amount of

2,420 kg/ha is not exceeded (NHL).

2,420 kg/ha is not exceeded (NHL).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environment factors not influenced by risk management

Volume of surface water: 300 L/m²

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

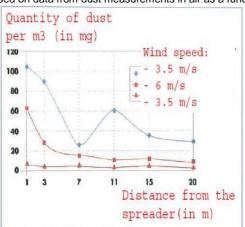
Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

There are no direct releases to adjacent surface waters.

Technical conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.


Organizational measures to prevent/limit release from site

In line with the requirements for good agricultural practice, agricultural soil should be analysed prior to application of lime and the application rate should be adjusted according to the results of the analysis.

2.2 Control of environmental exposure – only relevant for urban soil treatment

Product characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 256,865 kg/ha

Frequency and duration of use

1 day/year and only once in a lifetime; Multiple applications during the year are allowed, provided the total yearly amount of 256,865 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Lime is only applied onto the soil in the technosphere zone before road construction. There are no direct releases to adjacent surface waters.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
PROC 2, 3, 4, 5, 8a, 8b, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19	MEASE	< 1 mg/m³ (<0.001 – 0.6)	irritating to skin, dern minimised as far as tec for dermal effects has dermal exposure is not a	nulic lime is classified as mal exposure has to be chnically feasible. A DNEL is not been derived. Thus, assessed in this exposure nario.

Environmental exposure for agricultural soil protection

The PEC calculation for soil and surface water was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data: once applied on the soil, natural hydraulic lime can indeed migrate then towards surface waters, via drift.

- ''	· · · · · · · · · · · · · · · · · · ·	e can indeed migrate ther	i towards surface waters,	, via uriit.
Environmental	See amounts used			
emissions				
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for agricultu	ral soil protection		
Exposure	Substance	PEC (ug/L)	PNEC (ug/L)	RCR
concentration in aquatic pelagic compartment	NHL	8	574	0.015
Exposure concentration in sediments	As described above, no exposure of surface water nor sediment to lime is expected. Further, in natural waters the hydroxide ions react with HCO3– to form water and CO32 CO32- forms CaCO3 by reacting with Ca2+. The calcium carbonate precipitates and deposits on the sediment. Calcium carbonate is of low solubility and a constituent of natural soils.			
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR
concentrations in soil and groundwater	NHL	711.69	1262	0.56
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.			
Exposure concentration relevant for the food chain (secondary poisoning)	This point is not relevant because natural hydraulic lime can be considered to be omnipresent and essential in the environment. The uses covered do not significantly influence the distribution of the constituents (Ca ²⁺ and OH ⁻) in the environment.			

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental exposure for urban soil treatment

The urban soil treatment scenario is based on a road border scenario. At the special road border technical meeting (Ispra, September 5, 2003), EU Member States and industry agreed on a definition for a "road technosphere". The road technosphere can be defined as "the engineered environment that carries the geotechnical functions of the road in connection with its structure, operation and maintenance including the installations to ensure road safety and manage run off. This technosphere, which includes the hard and soft shoulder at the edge of the carriageway, is vertically dictated by the groundwater watertable. The road authority has responsibility for this road technosphere including road safety, road support, prevention of pollution and water management". The road technosphere was therefore excluded as assessment endpoint for risk assessment for the purpose of the existing/new substances regulations. The target zone is the zone beyond the technosphere, to which the environmental risk assessment applies.

The PEC calculation for soil was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data.

		o sacri as anno can se in	1	
Environmental	See amounts used			
emissions				
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for road border scenario			
Exposure concentration in aquatic pelagic compartment	Not relevant for road border scenario			
Exposure concentration in sediments	Not relevant for road border scenario			
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR
concentrations in soil and groundwater	NHL	819.32	1262	0.65
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.			
Exposure concentration relevant for the food chain (secondary poisoning)		uses covered do not si	considered to be omnipreser ignificantly influence the dis	

Environmental exposure for other uses

For all other uses, no quantitative environmental exposure assessment is carried because

- The operational conditions and risk management measures are less stringent than those outlined for agricultural soil
 protection or urban soil treatment
- Lime is an ingredient and chemically bound into a matrix. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water
- Lime is specifically used to release CO2-free breathable air, upon reaction with CO2. Such applications only relates to the air compartment, where the lime properties are exploited
- · Neutralisation/pH-shift is the intended use and there are no additional impacts beyond those desired.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.7: Professional uses of low dusty solids/powders of lime substances

lime substances			
Exposure Scenario	Format (1) addressing uses carried ou	it by workers	
1. Title			
Free short title	Professional uses of low dusty so	olids/powders of lime substances	
Systematic title based on use descriptor	SU22, SU1, SU5, SU6a, SU6b, SU7, SU10, SU11, SU12, SU13, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, PC36, PC37, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)		
Processes, tasks and/or activities covered	Processes, tasks and/or activities covered are described in Section 2 below.		
Assessment Method		ased on the exposure estimation tool MEASE. The t is based on FOCUS-Exposit.	
2. Operational con	ditions and risk management measures		
PROC/ERC	REACH definition	Involved tasks	
PROC 2	Use in closed, continuous process with occasional controlled exposure	Further information is provided in the ECHA Guidance on information requirements and	
PROC 3	Use in closed batch process (synthesis or formulation)	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-	
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises	EN).	
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)		
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities		
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities		
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)		
PROC 10	Roller application or brushing		
PROC 11	Non industrial spraying		
PROC 13	Treatment of articles by dipping and pouring		
PROC 15	Use as laboratory reagent		
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected		
PROC 17	Lubrication at high energy conditions and in partly open process		
PROC 18	Greasing at high energy conditions		
PROC 19	Hand-mixing with intimate contact and only PPE available		
PROC 21	Low energy manipulation of substances bound in materials and/or articles		

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 25	Other hot work operations with metals
PROC 26	Handling of solid inorganic substances at ambient temperature

ERC2, ERC8a,	Wide dispersive indoor and outdoor use of
ERC8b,	reactive substances or processing aids in open
ERC8c, ERC8d,	systems
EDC90 EDC9f	

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Use in preparation	Content in preparation	Physical form	Emission potential
PROC 25	not res	stricted	solid/powder, molten	high
All other applicable PROCs	not res	stricted	solid/powder	low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure
PROC 17	≤ 240 minutes
All other applicable PROCs	480 minutes (not restricted)

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls	Efficiency of LC	Further information
		(LC)	(according to MEASE)	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 19	Any potentially required separation of workers from the emission source is indicated above under "Frequency and	not applicable	na	-
All other applicable PROCs	duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	not required	na	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

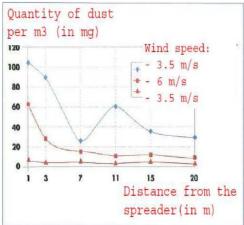
PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 4, 5, 11, 26	FFP1 mask	APF=4		Eye protection
PROC 16, 17, 18, 25	FFP2 mask	APF=10		equipment (e.g. goggles or visors) must
All other applicable PROCs	not required	na	Since natural hydraulic lime is classified as irritating to skin, the use of protective gloves is mandatory for all process steps.	excluded by the

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010


Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

2.2 Control of environmental exposure – only relevant for agricultural soil protection

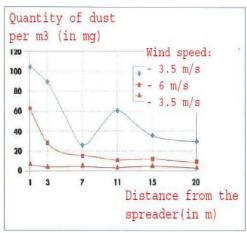
Product characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used	
Natural hydraulic lime	2,420 kg/ha
Frequency and duratio	of use
1 day/year (one applica 2,420 kg/ha is not exceed	aion per year). Multiple applications during the year are allowed, provided the total yearly amount of d (NHL).
Environment factors n	it influenced by risk management
Volume of surface water: Field surface area: 1 ha	:00 L/m²
Other given operationa	conditions affecting environmental exposure
Outdoor use of products Soil mixing depth: 20 cm	
Technical conditions a	d measures at process level (source) to prevent release
There are no direct releas	es to adjacent surface waters.
Technical conditions a	d measures to reduce or limit discharges, air emissions and releases to soil
Drift should be minimised.	
Organizational measure	s to prevent/limit release from site
In line with the requireme	its for good agricultural practice, agricultural soil should be analysed prior to application of lime and
the application rate shoul	be adjusted according to the results of the analysis.
2.2 Control of env	vironmental exposure – only relevant for urban soil treatment
Product characteristics	

FASSA BORTOLO


PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Drift: 1% (very worst-case e estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime

256,865 kg/ha

Frequency and duration of use

1 day/year and only once in a lifetime. Multiple applications during the year are allowed, provided the total yearly amount of 256,865 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

Lime is only applied onto the soil in the technosphere zone before road construction. There are no direct releases to adjacent surface waters.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

	Method used for		Method used for	
PROC	inhalation	Inhalation exposure	dermal	Dermal exposure
PROC	exposure	estimate (RCR)	exposure	estimate (RCR)
	assessment		assessment	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 2, 3, 4, 5, 8a, 8b, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 25, 26	MEASE	< 1 mg/m³ (0.01 – 0.75)	irritating to skin, derm minimised as far as tech	not been derived. Thus, not assessed in this
Environmental exposur	re for agricultural soil pro	otection		
guidance on the calculat ground water, surface wa the EUSES as it is more be included in the model on the basis of the Germa	ion of predicted environmenter and sediment (Kloskovappropriate for agricultura ling. FOCUS is a model ty an EXPOSIT 1.0 model, when the control is a model to the control is a model to the control is an exposite the control is an exposit	ental concentration values wksi et al., 1999). The FOO I-like application as in this pically developed for bioci here parameters such as c	oil group (FOCUS, 1996) at (PEC) of plant protection plant protection plant protection protection protection plant protection protec	products for soil, ool is preferred to the drift needs to urther elaborated rding to collected
emissions	See amounts used			
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for agricultur	ral soil protection		
Exposure	Substance	PEC (ug/L)	PNEC (ug/L)	RCR
concentration in aquatic			574	0.015
pelagic compartment	NHL	8	574	0.015
pelagic	As described above, no enatural waters the hydrox CaCO3 by reacting with 0	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon	nor sediment to lime is exp to form water and CO32 ate precipitates and deposi d a constituent of natural so	ected. Further, in CO32- forms its on the
pelagic compartment Exposure concentration in sediments Exposure	As described above, no enatural waters the hydrox CaCO3 by reacting with esediment. Calcium carbo	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon nate is of low solubility and PEC (mg/L)	nor sediment to lime is exp to form water and CO32 ate precipitates and deposi	ected. Further, in CO32- forms its on the
pelagic compartment Exposure concentration in sediments	As described above, no enatural waters the hydrox CaCO3 by reacting with esediment. Calcium carbo	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon nate is of low solubility and	nor sediment to lime is exp to form water and CO32 ate precipitates and deposi d a constituent of natural so	ected. Further, in CO32- forms its on the bils.
pelagic compartment Exposure concentration in sediments Exposure concentrations in soil	As described above, no enatural waters the hydrox CaCO3 by reacting with esediment. Calcium carbo Substance NHL	exposure of surface water kide ions react with HCO3-Ca2+. The calcium carbon nate is of low solubility and PEC (mg/L) 711.69	nor sediment to lime is exp to form water and CO32 ate precipitates and deposi d a constituent of natural so PNEC (mg/L)	ected. Further, in CO32- forms its on the bils. RCR 0.56

Environmental exposure for urban soil treatment

The urban soil treatment scenario is based on a road border scenario. At the special road border technical meeting (Ispra, September 5, 2003), EU Member States and industry agreed on a definition for a "road technosphere". The road technosphere can be defined as "the engineered environment that carries the geotechnical functions of the road in connection with its structure, operation and maintenance including the installations to ensure road safety and manage run off. This technosphere, which includes the hard and soft shoulder at the edge of the carriageway, is vertically dictated by the groundwater watertable. The road authority has responsibility for this road technosphere including road safety, road support, prevention of pollution and water management". The road technosphere was therefore excluded as assessment endpoint for risk assessment for the purpose of the existing/new substances regulations. The target zone is the zone beyond the technosphere, to which the environmental risk assessment applies.

The PEC calculation for soil was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental emissions	See amounts used			
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for road bord	der scenario		
Exposure concentration in aquatic pelagic compartment	Not relevant for road bord	der scenario		
Exposure concentration in sediments	Not relevant for road bord	der scenario		
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR
concentrations in soil and groundwater	NHL	819.32	1262	0.65
Exposure concentration in atmospheric compartment	This point is not relevant.	Natural hydraulic lime is	not volatile. The vapour pres	sures is below 10 ⁻⁵ Pa.
Exposure concentration relevant for the food chain (secondary poisoning)	· •	uses covered do not s	considered to be omnipreser ignificantly influence the dis	

Environmental exposure for other uses

For all other uses, no quantitative environmental exposure assessment is carried because

- The operational conditions and risk management measures are less stringent than those outlined for agricultural soi
 protection or urban soil treatment
- Lime is an ingredient and chemically bound into a matrix. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water
- Lime is specifically used to release CO2-free breathable air, upon reaction with CO2. Such applications only relates to the air compartment, where the lime properties are exploited
- · Neutralisation/pH-shift is the intended use and there are no additional impacts beyond those desired.

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.8: Professional uses of medium dusty solids/powders of lime substances

Fynosure Scenario	o Format (1) addressing uses carried ou	it hy workers
1. Title	or ormat (1) addressing uses carried of	at by workers
Free short title	Professional uses of medium dusty	solids/powders of lime substances
Systematic title based on use descriptor	SU23 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC34, PC35, PC36, AC1, AC2, AC3, AC4, AC5, AC6	111, SU12, SU13, SU16, SU17, SU18, SU19, SU20, , SU24 PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC27, PC28, PC29, PC30, PC31, PC32, PC33, , PC37, PC39, PC40 6, AC7, AC8, AC10, AC11, AC13 s are given in Section 2 below)
Processes, tasks and/or activities covered	,	ered are described in Section 2 below.
Assessment Method		assed on the exposure estimation tool MEASE. The t is based on FOCUS-Exposit.
2. Operational con	ditions and risk management measures	S
PROC/ERC	REACH definition	Involved tasks
PROC 2	Use in closed, continuous process with occasional controlled exposure	
PROC 3	Use in closed batch process (synthesis or formulation)	
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises	
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)	
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities	
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities	
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)	Further information is provided in the ECHA Guidance on information requirements and
PROC 10	Roller application or brushing	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-
PROC 11	Non industrial spraying	EN).
PROC 13	Treatment of articles by dipping and pouring	
PROC 15	Use as laboratory reagent	
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected	
PROC 17	Lubrication at high energy conditions and in partly open process	
PROC 18	Greasing at high energy conditions	
PROC 19	Hand-mixing with intimate contact and only PPE available	
PROC 25	Other hot work operations with metals	
PROC 26	Handling of solid inorganic substances at ambient temperature	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ERC2, ERC8a,	Wide dispersive indoor and outdoor use of
ERC8b,	reactive substances or processing aids in open
ERC8c, ERC8d,	systems
ERC8e, ERC8f	

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Use in preparation	Content in preparation	Physical form	Emission potential
PROC 25	not restricted		solid/powder, molten	high
All other applicable PROCs	not restricted		solid/powder	medium

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure		
PROC 11, 16, 17, 18, 19	≤ 240 minutes		
All other applicable PROCs	480 minutes (not restricted)		

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 11, 16	Any potentially required separation of workers from the emission source is indicated above under	generic local exhaust ventilation	72 %	-
PROC 17, 18		integrated local exhaust ventilation	87 %	-
PROC 19		not applicable	na	-

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10

"Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of All other applicable ventilated (positive not required na **PROCs** pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 2, 3, 16, 19	FFP1 mask	APF=4		Eye protection equipment (e.g.
PROC 4, 5, 8a, 8b, 9, 10, 13, 17, 18, 25, 26	FFP2 mask	APF=10	Since natural hydraulic	goggles or visors) must be worn, unless
PROC 11	FFP1 mask	APF=10		potential contact with the eye can be
PROC 15	not required	na	lime is classified as irritating to skin, the use of protective gloves is mandatory for all process steps.	excluded by the

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

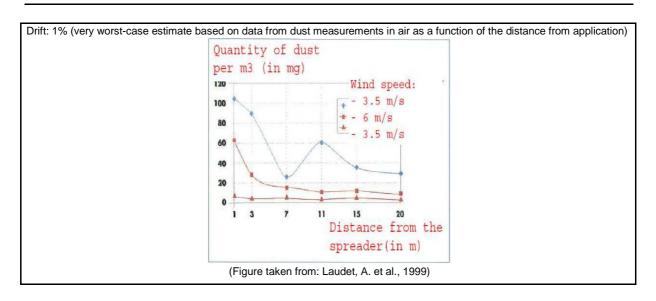
For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure – only relevant for agricultural soil protection

Product characteristics

Printing Date: 12/10


FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

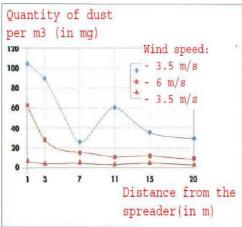
prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Amounts used	
Natural hydraulic lime	2,420 kg/ha
Frequency and duration	of use
1 day/year (one applica 2,420 kg/ha is not exceed	ion per year). Multiple applications during the year are allowed, provided the total yearly amount of d (NHL).
Environment factors n	ot influenced by risk management
Volume of surface water: Field surface area: 1 ha	i00 L/m²
Other given operationa	conditions affecting environmental exposure
Outdoor use of products Soil mixing depth: 20 cm	
Technical conditions a	ad measures at process level (source) to prevent release
There are no direct releas	es to adjacent surface waters.
Technical conditions a	d measures to reduce or limit discharges, air emissions and releases to soil
Drift should be minimised.	
Organizational measure	s to prevent/limit release from site
In line with the requireme	its for good agricultural practice, agricultural soil should be analysed prior to application of lime and
the application rate shoul	be adjusted according to the results of the analysis.
2.2 Control of env	ironmental exposure – only relevant for urban soil treatment
Product characteristics	

FASSA BORTOLO


PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 256,865 kg/ha

Frequency and duration of use

1 day/year and only once in a lifetime. Multiple applications during the year are allowed, provided the total yearly amount of 256,865 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

Lime is only applied onto the soil in the technosphere zone before road construction. There are no direct releases to adjacent surface waters.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

	Method used for		Method used for	
PROC	inhalation	Inhalation exposure	dermal	Dermal exposure
	exposure	estimate (RCR)	exposure	estimate (RCR)
	assessment		assessment	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 2, 3, 4, 5, 8a, 8b, 9, 10, 11, 13, 15, 16, 17, 18, 19, 25, 26	MEASE	< 1 mg/m³ (0.25 – 0.825)	irritating to skin, dern minimised as far as tech			
Environmental exposur	re for agricultural soil pro	otection				
The PEC calculation for soil and surface water was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data: once applied on the soil, natural hydraulic lime can indeed migrate then towards surface waters, via drift.						
Environmental emissions	See amounts used					
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for agricultural soil protection					
Exposure	Substance	PEC (ug/L)	PNEC (ug/L)	RCR		
concentration in aquatic pelagic compartment	NHL	8	574	0.015		
Exposure concentration in sediments	As described above, no exposure of surface water nor sediment to lime is expected. Further, in natural waters the hydroxide ions react with HCO3- to form water and CO32 CO32- forms CaCO3 by reacting with Ca2+. The calcium carbonate precipitates and deposits on the sediment. Calcium carbonate is of low solubility and a constituent of natural soils.					
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR		
concentrations in soil and groundwater	NHL	711.69	1262	0.56		
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.					
Exposure concentration relevant for the food chain (secondary poisoning)	This point is not relevant because calcium can be considered to be omnipresent and essential in the environment. The uses covered do not significantly influence the distribution of the constituents (Ca²+ and OH¹) in the environment.					

Environmental exposure for urban soil treatment

The urban soil treatment scenario is based on a road border scenario. At the special road border technical meeting (Ispra, September 5, 2003), EU Member States and industry agreed on a definition for a "road technosphere". The road technosphere can be defined as "the engineered environment that carries the geotechnical functions of the road in connection with its structure, operation and maintenance including the installations to ensure road safety and manage run off. This technosphere, which includes the hard and soft shoulder at the edge of the carriageway, is vertically dictated by the groundwater watertable. The road authority has responsibility for this road technosphere including road safety, road support, prevention of pollution and water management". The road technosphere was therefore excluded as assessment endpoint for risk assessment for the purpose of the existing/new substances regulations. The target zone is the zone beyond the technosphere, to which the environmental risk assessment applies.

The PEC calculation for soil was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental emissions	See amounts used				
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for road border scenario				
Exposure concentration in aquatic pelagic compartment	Not relevant for road border scenario				
Exposure concentration in sediments	Not relevant for road border scenario				
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR	
concentrations in soil and groundwater	NHL	819.32	1262	0.65	
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.				
Exposure concentration relevant for the food chain (secondary poisoning)	This point is not relevant because calcium can be considered to be omnipresent and essential in the environment. The uses covered do not significantly influence the distribution of the constituents (Ca²+ and OH·) in the environment.				

Environmental exposure for other uses

For all other uses, no quantitative environmental exposure assessment is carried because

- The operational conditions and risk management measures are less stringent than those outlined for agricultural soi
 protection or urban soil treatment
- Lime is an ingredient and chemically bound into a matrix. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water
- Lime is specifically used to release CO2-free breathable air, upon reaction with CO2. Such applications only relates to the air compartment, where the lime properties are exploited
- · Neutralisation/pH-shift is the intended use and there are no additional impacts beyond those desired.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.9: Professional uses of high dusty solids/powders of lime substances

ilme substan					
Exposure Scenario	Format (1) addressing uses carried ou	it by workers			
1. Title					
Free short title	Professional uses of high dusty s	olids/powders of lime substances			
Systematic title based on use descriptor	SU22, SU1, SU5, SU6a, SU6b, SU7, SU10, SU11, SU12, SU13, SU16, SU17, SU18, SU19, SU20, SU23, SU24 PC1, PC2, PC3, PC7, PC8, PC9a, PC9b, PC11, PC12, PC13, PC14, PC15, PC16, PC17, PC18, PC19, PC20, PC21, PC23, PC24, PC25, PC26, PC27, PC28, PC29, PC30, PC31, PC32, PC33, PC34, PC35, PC36, PC37, PC39, PC40 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)				
Processes, tasks and/or activities covered	,	ered are described in Section 2 below.			
Assessment Method		ased on the exposure estimation tool MEASE. The t is based on FOCUS-Exposit.			
2. Operational con	ditions and risk management measures	3			
PROC/ERC	REACH definition	Involved tasks			
PROC 2	Use in closed, continuous process with occasional controlled exposure				
PROC 3	Use in closed batch process (synthesis or formulation)				
PROC 4	Use in batch and other process (synthesis) where opportunity for exposure arises				
PROC 5	Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)				
PROC 8a	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities				
PROC 8b	Transfer of substance or preparation (charging/ discharging) from/to vessels/large containers at dedicated facilities				
PROC 9	Transfer of substance or preparation into small containers (dedicated filling line, including weighing)	Further information is provided in the ECHA Guidance on information requirements and			
PROC 10	Roller application or brushing	chemical safety assessment, Chapter R.12: Use descriptor system (ECHA-2010-G-05-			
PROC 11	Non industrial spraying	EN).			
PROC 13	Treatment of articles by dipping and pouring				
PROC 15	Use as laboratory reagent				
PROC 16	Using material as fuel sources, limited exposure to unburned product to be expected				
PROC 17	Lubrication at high energy conditions and in partly open process				
PROC 18	Greasing at high energy conditions				
PROC 19	Hand-mixing with intimate contact and only PPE available				
PROC 25	Other hot work operations with metals				
PROC 26	Handling of solid inorganic substances at ambient temperature				

FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ERC2, ERC8a,	Wide dispersive indoor and outdoor use of
ERC8b,	reactive substances or processing aids in open
ERC8c, ERC8d,	systems
ERC8e, ERC8f	

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Use in preparation	Content in preparation	Physical form	Emission potential
All applicable PROCs	not restricted		solid/powder	high

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and duration of use/exposure

PROC	Duration of exposure
PROC 4, 5, 8a, 8b, 9, 10, 16, 17, 18, 19, 26	≤ 240 minutes
PROC 11	≤ 60 minutes
All other applicable PROCs	480 minutes (not restricted)

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 4, 5, 8a, 8b, 9, 11, 16, 26	Any potentially required separation of workers from the emission source is indicated above under "Frequency and duration of exposure".	generic local exhaust ventilation	72 %	-
PROC 17, 18		integrated local exhaust ventilation	87 %	-
PROC 19		not applicable	na	only in well ventilated rooms or outdoors (efficiency 50 %)-

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN
Revision date: 12/10
Printing Date: 12/10

All other applicable PROCs	A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	not required	na	-
----------------------------	---	--------------	----	---

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

	0	DDE ((; :		=
PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
PROC 9, 26	FFP1 mask	APF=4	Since natural hydraulic	Eye protection equipment (e.g.
PROC 11, 17, 18, 19	FFP3 mask	APF=20		goggles or visors) must be worn, unless
PROC 25	FFP2 mask	APF=10		
All other applicable PROCs	FFP2 mask	APF=10	lime is classified as irritating to skin, the use of protective gloves is mandatory for all process steps.	excluded by the nature and type of application (i.e. closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

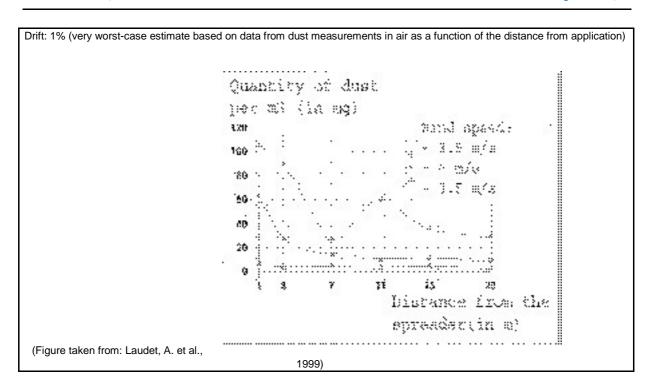
Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure – only relevant for agricultural soil protection


Product characteristics

CONTROLO OUALITÀ PER L'EDILIZIA

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

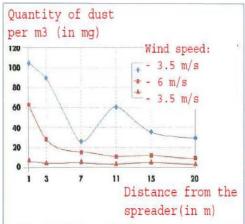
Version: 1.0/EN
Revision date: 12/10
Printing Date: 12/10

Amounts used	
Natural hydraulic lime	2,420 kg/ha
Frequency and duration	of use
2,420 kg/ha is not exceed	ion per year). Multiple applications during the year are allowed, provided the total yearly amount of d (NHL).
Environment factors n	ot influenced by risk management
Volume of surface water: Field surface area: 1 ha	i00 L/m2
Other given operationa	conditions affecting environmental exposure
Outdoor use of products Soil mixing depth: 20 cm	
Technical conditions a	d measures at process level (source) to prevent release
There are no direct releas	es to adjacent surface waters.
Technical conditions a	d measures to reduce or limit discharges, air emissions and releases to soil
Drift should be minimised.	
Organizational measure	s to prevent/limit release from site
In line with the requireme	its for good agricultural practice, agricultural soil should be analysed prior to application of lime and
the application rate shoul	be adjusted according to the results of the analysis.
2.2 Control of env	ironmental exposure – only relevant for urban soil treatment

FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010


Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Product

characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 256,865 kg/ha

Frequency and duration of use

1 day/year and only once in a lifetime. Multiple applications during the year are allowed, provided the total yearly amount of 256,865 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

Lime is only applied onto the soil in the technosphere zone before road construction. There are no direct releases to adjacent surface waters.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

	Method used for		Method used for	
PROC	inhalation	Inhalation exposure	dermal	Dermal exposure
PROC	exposure	estimate (RCR)	exposure	estimate (RCR)
	assessment		assessment	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 2, 3, 4, 5, 8a, 8b, 9, 10, 11, 13, 15, 16, 17, 18, 19, 25, 26	MEASE	<1 mg/m³ (0.5 – 0.825)	irritating to skin, dern minimised as far as tech	
Environmental exposur	re for agricultural soil pro	otection		
The PEC calculation for soil and surface water was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data: once applied on the soil, natural hydraulic lime can indeed migrate then towards surface waters, via drift.				
Environmental emissions	See amounts used			
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for agricultural soil protection			
Exposure	Substance	PEC (ug/L)	PNEC (ug/L)	RCR
concentration in aquatic pelagic compartment	NHL	8	574	0.015
in aquatic pelagic	As described above, no enatural waters the hydrox CaCO3 by reacting with 0	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon	574 nor sediment to lime is exp- to form water and CO32 ate precipitates and depos d a constituent of natural se	pected. Further, in CO32- forms its on the
in aquatic pelagic compartment Exposure concentration in	As described above, no enatural waters the hydrox CaCO3 by reacting with 0	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon	nor sediment to lime is exp to form water and CO32 ate precipitates and depos	pected. Further, in CO32- forms its on the
in aquatic pelagic compartment Exposure concentration in sediments	As described above, no enatural waters the hydrox CaCO3 by reacting with esediment. Calcium carbo	exposure of surface water kide ions react with HCO3- Ca2+. The calcium carbon nate is of low solubility and	nor sediment to lime is exp to form water and CO32- ate precipitates and depos d a constituent of natural s	pected. Further, in CO32- forms its on the oils.
in aquatic pelagic compartment Exposure concentration in sediments Exposure concentrations in	As described above, no enatural waters the hydrox CaCO3 by reacting with esediment. Calcium carbo Substance NHL	exposure of surface water kide ions react with HCO3-Ca2+. The calcium carbon nate is of low solubility and PEC (mg/L) 712	nor sediment to lime is exp to form water and CO32- ate precipitates and depos d a constituent of natural s	pected. Further, in CO32- forms its on the poils. RCR 0.56

Environmental exposure for urban soil treatment

The urban soil treatment scenario is based on a road border scenario. At the special road border technical meeting (Ispra, September 5, 2003), EU Member States and industry agreed on a definition for a "road technosphere". The road technosphere can be defined as "the engineered environment that carries the geotechnical functions of the road in connection with its structure, operation and maintenance including the installations to ensure road safety and manage run off. This technosphere, which includes the hard and soft shoulder at the edge of the carriageway, is vertically dictated by the groundwater watertable. The road authority has responsibility for this road technosphere including road safety, road support, prevention of pollution and water management". The road technosphere was therefore excluded as assessment endpoint for risk assessment for the purpose of the existing/new substances regulations. The target zone is the zone beyond the technosphere, to which the environmental risk assessment applies.

The PEC calculation for soil was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental emissions	See amounts used			
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for road border scenario			
Exposure concentration in aquatic pelagic compartment	Not relevant for road border scenario			
Exposure concentration in sediments	Not relevant for road border scenario			
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR
concentrations in soil and groundwater	NHL	819.32	1262	0.65
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.			
Exposure concentration relevant for the food chain (secondary poisoning)	This point is not relevant because calcium can be considered to be omnipresent and essential in the environment. The uses covered do not significantly influence the distribution of the constituents (Ca²+ and OH¹) in the environment.			

Environmental exposure for other uses

For all other uses, no quantitative environmental exposure assessment is carried because

- The operational conditions and risk management measures are less stringent than those outlined for agricultural soi
 protection or urban soil treatment
- Lime is an ingredient and chemically bound into a matrix. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water
- Lime is specifically used to release CO2-free breathable air, upon reaction with CO2. Such applications only relates to the air compartment, where the lime properties are exploited
- · Neutralisation/pH-shift is the intended use and there are no additional impacts beyond those desired.

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

FISSA BUBUULO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Task

Milling

Loading of spreader

Application to soil

(spreading)

Revision date: 12/10 Printing Date: 12/10

ES number 9.10: Professional use of lime substances in soil treatment

Exposure Scenario	Format (1) address	sing uses carried ou	ıt by workers	
1. Title				
Free short title		Professional use of lime su	ubstances in soil treatmer	nt
Systematic title based on use descriptor	(арр	SL ropriate PROCs and ERC	J22 s are given in Section 2 b	elow)
Processes, tasks and/or activities covered	Processes,	tasks and/or activities cove	ered are described in Sec	ction 2 below.
Assessment Method		f inhalation exposure is estima environmental assessmer	ation tool MEASE.	·
2. Operational con	ditions and risk mar			'
Task/ERC	REACH o	lefinition	Involve	ed tasks
Milling	PRO	OC 5		
Loading of spreader	PROC 8b, PROC 26 Preparation and use of natura			
Application to soil (spreading)	PROC 11 soil treatment.		eaunen.	
ERC2, ERC8a, ERC8b, ERC8c, ERC8d, ERC8e, ERC8f				
2.1 Control of work	ers exposure		and chivinghin	oritar protoction:
Product characteristic				
is reflected by an assignr substances at ambient te operations, fugacity is ter	approach, the substance- nent of a so-called fugacity emperature the fugacity is be mperature based, taking in up, high abrasive tasks an	y class in the MEASE tool. pased on the dustiness of to account the process ter	. For operations conducte that substance. Whereas mperature and the melting	d with solid in hot metal g point of the
Task	Use in preparation	Content in preparation	Physical form	Emission potential
Milling	not res	tricted	solid/powder	high
Loading of spreader	not restricted		solid/powder	high
Application to soil (spreading)	not restricted		solid/powder	high
Amounts used				
the combination of the s	ed per shift is not consider cale of operation (industri the main determinant of the	al vs. professional) and le	evel of containment/autor	
Frequency and duration	of use/exposure			

Duration of exposure

240 minutes

240 minutes

480 minutes (not restricted)

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions (e.g. process temperature and process pressure) are not considered relevant for occupational exposure assessment of the conducted processes.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

Task	Level of separation	Localised controls (LC)	Efficiency of LC	Further information
Milling	Separation of workers is generally	not required	na	-
Loading of spreader	not required in the conducted processes.	not required	na	-
Application to soil (spreading)	During application the worker is sitting in the cabin of the spreader	Cabin with filtered air supply	99%	-

Organisational measures to prevent /limit releases, dispersion and exposure

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measures related to personal protection, hygiene and health evaluation

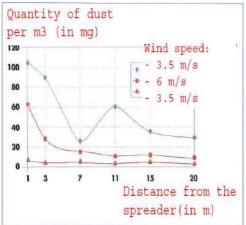
Task	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
Milling	FFP3 mask	APF=20		Eye protection equipment (e.g. goggles or visors) must be worn, unless
Loading of spreader	FFP3 mask	APF=20	Since natural hydraulic lime is classified as irritating to skin, the use of protective gloves	excluded by the
Application to soil (spreading)	not required	na	is mandatory for all process steps.	closed process). Additionally, face protection, protective clothing and safety shoes are required to be worn as appropriate.

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010


Version: 1.0/EN
Revision date: 12/10

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure – only relevant for agricultural soil protection

Product characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 2,420 kg/ha

Frequency and duration of use

1 day/year (one application per year). Multiple applications during the year are allowed, provided the total yearly amount of 2,420 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Volume of surface water: 300 L/m²

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

There are no direct releases to adjacent surface waters.

Technical conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

Organizational measures to prevent/limit release from site

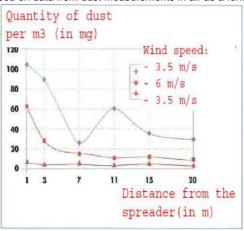
In line with the requirements for good agricultural practice, agricultural soil should be analysed prior to application of lime and the application rate should be adjusted according to the results of the analysis.

Printing Date: 12/10

FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010


Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

2.2 Control of environmental exposure – only relevant for urban soil treatment

Product characteristics

Drift: 1% (very worst-case estimate based on data from dust measurements in air as a function of the distance from application)

(Figure taken from: Laudet, A. et al., 1999)

Amounts used

Natural hydraulic lime 256,865 kg/ha

Frequency and duration of use

1 day/year and only once in a lifetime. Multiple applications during the year are allowed, provided the total yearly amount of 256,865 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Field surface area: 1 ha

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

Lime is only applied onto the soil in the technosphere zone before road construction. There are no direct releases to adjacent surface waters.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

3. Exposure estimation and reference to its source

Occupational exposure

Measured data and modelled exposure estimates (MEASE) were used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived noeffect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust).

Task	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment	Dermal exposure estimate (RCR)
Milling	MEASE	0.488 mg/m³ (0.48)		

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Loading of spreader	MEASE (PROC 8b)	0.488 mg/m³ (0.48)
Application to soil (spreading)	measured data	0.880 mg/m³ (0.88)

Since natural hydraulic lime is classified as irritating to skin, dermal exposure has to be minimised as far as technically feasible. A DNEL for dermal effects has not been derived. Thus, dermal exposure is not assessed in this exposure scenario.

Environmental exposure for agricultural soil protection

The PEC calculation for soil and surface water was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data: once applied on the soil, natural hydraulic lime can indeed migrate then towards surface waters, via drift.

- ''	soil, natural nydraulic lime can indeed migrate then towards surface waters, via drift.				
Environmental	See amounts used	See amounts used			
emissions					
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for agricultural soil protection				
Exposure	Substance	PEC (ug/L)	PNEC (ug/L)	RCR	
concentration in aquatic pelagic compartment	NHL	8	574	0.015	
Exposure concentration in sediments	As described above, no exposure of surface water nor sediment to lime is expected. Further, in natural waters the hydroxide ions react with HCO3- to form water and CO32 CO32- forms CaCO3 by reacting with Ca2+. The calcium carbonate precipitates and deposits on the sediment. Calcium carbonate is of low solubility and a constituent of natural soils.				
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR	
concentrations in soil and groundwater	NHL	712	1262	0.56	
Exposure concentration in atmospheric compartment	This point is not relevant. Pa.	Natural hydraulic lime is ı	not volatile. The vapour pre	essures is below 10 ⁻⁵	
Exposure concentration relevant for the food chain (secondary poisoning)		uses covered do not sign	considered to be omnipresong ificantly influence the d		

Environmental exposure for urban soil treatment

The urban soil treatment scenario is based on a road border scenario. At the special road border technical meeting (Ispra, September 5, 2003), EU Member States and industry agreed on a definition for a "road technosphere". The road technosphere can be defined as "the engineered environment that carries the geotechnical functions of the road in connection with its structure, operation and maintenance including the installations to ensure road safety and manage run off. This technosphere, which includes the hard and soft shoulder at the edge of the carriageway, is vertically dictated by the groundwater watertable. The road authority has responsibility for this road technosphere including road safety, road support, prevention of pollution and water management". The road technosphere was therefore excluded as assessment endpoint for risk assessment for the purpose of the existing/new substances regulations. The target zone is the zone beyond the technosphere, to which the environmental risk assessment applies.

The PEC calculation for soil was based on the FOCUS soil group (FOCUS, 1996) and on the "draft guidance on the calculation of predicted environmental concentration values (PEC) of plant protection products for soil, ground water, surface water and sediment (Kloskowksi et al., 1999). The FOCUS/EXPOSIT modelling tool is preferred to the EUSES as it is more appropriate for agricultural-like application as in this case where parameter as the drift needs to be included in the modelling. FOCUS is a model typically developed for biocidal applications and was further elaborated on the basis of the German EXPOSIT 1.0 model, where parameters such as drifts can be improved according to collected data.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Environmental emissions	See amounts used			
Exposure concentration in waste water treatment plant (WWTP)	Not relevant for road border scenario			
Exposure concentration in aquatic pelagic compartment	Not relevant for road border scenario			
Exposure concentration in sediments	Not relevant for road border scenario			
Exposure	Substance	PEC (mg/L)	PNEC (mg/L)	RCR
concentrations in soil and groundwater	NHL	819.32	1262	0.65
Exposure concentration in atmospheric compartment	This point is not relevant. Natural hydraulic lime is not volatile. The vapour pressures is below 10 ⁻⁵ Pa.			
Exposure concentration relevant for the food chain (secondary poisoning)	This point is not relevant because calcium can be considered to be omnipresent and essential in the environment. The uses covered do not significantly influence the distribution of the constituents (Ca ²⁺ and OH ⁻) in the environment.			

Environmental exposure for other uses

For all other uses, no quantitative environmental exposure assessment is carried because

- The operational conditions and risk management measures are less stringent than those outlined for agricultural soi
 protection or urban soil treatment
- Lime is an ingredient and chemically bound into a matrix. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water
- Lime is specifically used to release CO2-free breathable air, upon reaction with CO2. Such applications only relates to the air compartment, where the lime properties are exploited
- · Neutralisation/pH-shift is the intended use and there are no additional impacts beyond those desired.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

FASSA BORUOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.11: Professional uses of articles/containers containing lime substances

Exposure Scenario	Format (1) addressing uses carried ou	ıt by workers		
1. Title				
Free short title	Professional uses of articles/cont	ainers containing lime substances		
Systematic title based on use descriptor	SU22, SU1, SU5, SU6a, SU6b, SU7, SU10, SU11, SU12, SU13, SU16, SU17, SU18, SU19, SU20, SU23, SU24 AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC10, AC11, AC13 (appropriate PROCs and ERCs are given in Section 2 below)			
Processes, tasks and/or activities covered	Processes, tasks and/or activities cover	ered are described in Section 2 below.		
Assessment Method	The assessment of inhalation exposure is based on the exposure estimation tool MEASE.			
2. Operational cond	ditions and risk management measures	S		
PROC/ERC	REACH definition	Involved tasks		
PROC 0	Other process (PROC 21 (low emission potential) as proxy for exposure estimation)	Use of containers containing natural hydraulic lime (NHL)/preparations as CO ₂ absorbents (e.g. breathing apparatus)		
PROC 21	Low energy manipulation of substances bound in materials and/or articles	Handling of substances bound in materials and/or articles		
PROC 24	High (mechanical) energy work-up of substances Grinding, mechanical cutting bound in materials and/or articles			
PROC 25	Other hot work operations with metals	Welding, soldering		
ERC10, ERC11, ERC 12	Wide dispersive indoor and outdoor use of longlife articles and materials with low release	Natural hydraulic lime (NHL) bound into or onto articles and materials such as: wooden and plastic construction and building materials (e.g. gutters, drains), flooring, furniture, toys, leather products, paper and cardboard products (magazines, books, news paper and packaging paper), electronic equipment (casing)		

2.1 Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential.

PROC	Used in preparation?	Content in preparation	Physical form	Emission potential
PROC 0	not res	stricted	massive objects (pellets), low potential for dust formation due to abrasion during previous filling and handling activities of pellets, not during use of breathing apparatus	low (worst case assumption as no inhalation exposure is assumed during the use of the breathing apparatus due to the very low abrasive potential)
PROC 21	not res	stricted	massive objects	very low

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 24, 25	not restricted	massive objects	high		
Amounts used					
The actual tenness handled never hift is not considered to influence the expecture of qualification according by					

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROC) is the main determinant of the process intrinsic emission potential.

Frequency and dura	Frequency and duration of use/exposure				
PROC	Duration of exposure				
PROC 0	480 minutes (not restricted as far as occupational exposure to natural hydraulic lime (NHL) is concerned, the actual wearing duration may be restricted due the user instructions of the actual breathing apparatus)				
PROC 21	480 minutes (not restricted)				
PROC 24	≤ 240 minutes				
PROC 25	≤ 240 minutes				

Human factors not influenced by risk management

The shift breathing volume during all process steps reflected in the PROCs is assumed to be 10 m³/shift (8 hours).

Other given operational conditions affecting workers exposure

Operational conditions like process temperature and process pressure are not considered relevant for occupational exposure assessment of the conducted processes. In process steps with considerably high temperatures (i.e. PROC 22, 23, 25), the exposure assessment in MEASE is however based on the ratio of process temperature and melting point. As the associated temperatures are expected to vary within the industry the highest ratio was taken as a worst case assumption for the exposure estimation. Thus all process temperatures are automatically covered in this exposure scenario for PROC 22, 23 and PROC 25.

Technical conditions and measures at process level (source) to prevent release

Risk management measures at the process level (e.g. containment or segregation of the emission source) are generally not required in the processes.

Technical conditions and measures to control dispersion from source towards the worker

PROC	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
PROC 0, 21, 24, 25	Any potentially required separation of workers from the emission source is indicated above under "Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	not required	na	-

Organisational measures to prevent /limit releases, dispersion and exposure

FISSI BORUOLO QUALITÀ PER L'EDILIZIA

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no eating and smoking at the workplace, the wearing of standard working clothes and shoes unless otherwise stated below. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

Conditions and measur	Conditions and measures related to personal protection, hygiene and health evaluation					
PROC	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)		
PROC 0, 21	not required	na		Eye protection equipment (e.g. goggles or visors) must be worn, unless		
PROC 24, 25	FFP1 mask	APF=4	Since natural hydraulic lime (NHL) is considered as irritating to skin, the use of protective gloves is mandatory for all process steps.	potential contact with the eye can be		

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers. An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.2 Control of environmental exposure

Product characteristics

Lime is chemically bound into/onto a matrix with very low release potential

3. Exposure estimation and reference to its source

Occupational exposure

The exposure estimation tool MEASE was used for the assessment of inhalation exposure. The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on the DNEL for natural hydraulic lime (NHL) of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate derived using MEASE (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction being a sub-fraction of the inhalable fraction according to EN 481.

PROC	Method used for inhalation exposure assessment	Inhalation exposure estimate (RCR)	Method used for dermal exposure assessment
PROC 0	MEASE (PROC 21)	0.5 mg/m³ (0.5)	Since natural hydra as irritating to skin
PROC 21	MEASE	0.05 mg/m³ (0.05)	minimised as far as
PROC 24	MEASE	0.825 mg/m³ (0.825)	ior dermai effects

Since natural hydraulic lime (NHL) is considered as irritating to skin, dermal exposure has to be minimised as far as technically feasible. A DNEL for dermal effects has not been derived. Thus,

Dermal

estimate (RCR)

exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

PROC 25	MEASE	0.6 mg/m³ (0.6)	dermal exposure is not assessed in this exposure
			scenario.

Environmental exposure

Lime is an ingredient and is chemically bound into a matrix: there is no intended release of lime during normal and reasonable foreseeable conditions of use. Releases are negligible and insufficient to cause a pH-shift in soil, wastewater or surface water.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. This has to be done by showing that they limit the inhalation and dermal exposure to a level below the respective DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MFASE

(www.ebrc.de/mease.html) to estimate the associated exposure. The dustiness of the substance used can be determined according to the MEASE glossary. For example, substances with a dustiness less than 2.5 % according to the Rotating Drum Method (RDM) are defined as "low dusty", substances with a dustiness less than 10 % (RDM) are defined as "medium dusty" and substances with a dustiness ≥10 % are defined as "high dusty".

DNEL_{inhalation}: 1 mg/m³ (as respirable dust)

Important note: The DU has to be aware of the fact that apart from the long-term DNEL given above, a DNEL for acute effects exists at a level of 4 mg/m³. By demonstrating a safe use when comparing exposure estimates with the long-term DNEL, the acute DNEL is therefore also covered (according to R.14 guidance, acute exposure levels can be derived by multiplying longterm exposure estimates by a factor of 2). When using MEASE for the derivation of exposure estimates, it is noted that the exposure duration should only be reduced to half-shift as a risk management measure (leading to an exposure reduction of 40 %).

CONTOLO OUALITÀ PER L'EDILIZIA

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.12: Consumer use of building and construction material (DIY – do it yourself)

material (Dir							
Exposure Scenario	Forma	t (2) addressing	uses carried out by	consume	ers		
1. Title							
Free short title			Consumer use of build	ing and cor	nstruction materia	al	
Systematic title based on use descriptor			SU21, PC9a, PC9b, El				
Processes, tasks activ		•	Handling (mixing ar	•			
			Application of liquid, pa				
			Human health:	,	•		
			A qualitative assessm	ent has be	een performed f	or oral and dermal	
Assessment Method*			exposure as well as ex				
Assessment method			•	has been assessed by the Dutch model (van Hemmen, 1992).			
			Environment: A qualitative justification	n 000000m	ant is provided		
O Operational con	alisia a	a and sigle was			ent is provided.		
	aition		nagement measur				
RMM			ated risk management m				
PC/ERC				icle categ	ories (AC) and	environmental release	
		categories (ERC					
DC 00 0h			ng of powder containing li				
PC 9a, 9b		Application of lim Post-application of	e plaster, putty or slurry t	o trie walls	or ceiling.		
			ndoor use resulting in inc	ducion into	or onto a matrix		
			ndoor use resulting in inc outdoor use of processing				
ERC 8c, 8d, 8e, 8f			outdoor use of reactive su				
			outdoor use resulting in ir			(
2.1 Control of con	sume		g g				
Product characteristic		о охросито					
Description of the		entration of the	Physical state of	Dustings	ss (if relevant)	Packaging design	
preparation		ance in the	the preparation	Dustilles	ss (II relevant)	I ackaging design	
propuration		ration	life preparation				
Lime substance	100 %		Solid, powder	High, me	dium and low,	Bulk in bags of up to	
Plaster, Mortar	20-40		Solid, powder		g on the kind	35 kg.	
,					ubstance		
				(indicativ			
					1 fact sheet		
Diagter Marter	20.40	0/	Deets	see secti	011 9.0.3)		
Plaster, Mortar	20-40		Pasty	-		la tubas aubusista	
Putty, filler	30-55	%	Pasty, highly viscous, thick liquid	-		In tubes or buckets	
Pre-mixed lime wash	~30%		Solid, powder	High - lov	**	Bulk in bags of up to	
paint	~30%	1	Solia, powdel	(indicativ		35 kg.	
paint				`	fact sheet	55 kg.	
					on 9.0.3)		
Lime wash paint/milk	~ 30 %	%	Milk of lime	-	/	-	
of lime preparation			preparation				
Amounts used							
Description of the		Amount used	per event				
preparation		<u> </u>	-				
Filler, putty	_		owder (2:1 powder water)				
Difficult to deter			rmine, because the amount is heavily dependent on the depth and size of				
the holes to be							
			ling on the size of the roo				
Floor/wall equalizer			ling on the size of the roo	om, wall to	oe equalized.		
Frequency and duration	on of us						
Description of task			on of exposure per eve		frequency of e	events	
Mixing and loading of lin	ne conta		nin (DIY1-fact sheet, RIV				
powder. Chapte			er 2.4.2 Mixing and loadi	ng	2/year (DIY1 fac	ct sheet)	
·		of pow	.1 \				

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Application of lime plaster, putty or	Several minutes - hours	2/year (DIY1 fact sheet)
slurry to the walls or ceiling		

Human factors not influenced by risk management				
Description of the task	Population exposed	Breathing rate	Exposed body part	Corresponding skin area [cm²]
Handling of powder	Adult	1.25 m³/hr	Half of both hands	430 (DIY1 fact sheet)
Application of liquid, pasty lime preparations.	Adult	NR	Hands and forearms	1900 (DIY ¹ fact sheet)

Other given operational conditions affecting consumers exposure

Description of the task	Indoor/outdoor	Room volume	Air exchange rate
Handling of powder	indoor	1 m³ (personal space, small	0.6 hr ⁻¹ (unspecified room)
		area around the user)	
Application of liquid, pasty lime preparations.	indoor	NR	NR

Conditions and measures related to information and behavioural advice to consumers

In order to avoid health damage DIYers should comply with the same strict protective measures which apply to professional workplaces:

- Change wet clothing, shoes and gloves immediately.
- Protect uncovered areas of skin (arms, legs, face): there are various effective skin protection products which should be used in accordance with a skin protection plan (skin protection, cleansing and care). Cleanse the skin thoroughly after the work and apply a care product.

Conditions and measures related to personal protection and hygiene

In order to avoid health damage DIYers should comply with the same strict protective measures which apply to professional workplaces:

- When preparing or mixing building materials, during demolition or caulking and, above all, during overhead work, wear protective goggles as well as face masks during dusty work.
- Choose work gloves carefully. Leather gloves become wet and can facilitate burns. When working in a wet environment, cotton gloves with plastic covering (nitrile) are better. Wear gauntlet gloves during overhead work because they can considerably reduce the amount of humidity which permeates the working clothes.

2.2 Control of environmental exposure

Product characteristics

Not relevant for exposure assessment

Amounts used*

Not relevant for exposure assessment

Frequency and duration of use

Not relevant for exposure assessment

Environment factors not influenced by risk management

Default river flow and dilution

Other given operational conditions affecting environmental exposure

Indoor

Direct discharge to the wastewater is avoided.

Conditions and measures related to municipal sewage treatment plant

Default size of municipal sewage system/treatment plant and sludge treatment technique

Conditions and measures related to external treatment of waste for disposal

Not relevant for exposure assessment

Conditions and measures related to external recovery of waste

Not relevant for exposure assessment

3. Exposure estimation and reference to its source

The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived noeffect level) and is given in parentheses below. For inhalation exposure, the RCR is based on the acute DNEL for lime substances of 4 mg/m³ (as respirable dust) and the respective inhalation exposure estimate (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction is a sub-fraction of the inhalable fraction according to EN 481. Since limes are classified as irritating to skin and eyes a qualitative assessment has been performed for dermal exposure and exposure to the eye.

Human exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Handling of powder Route of exposure	Exposure estimate	Method used, comments
Oral	Exposure estimate	Qualitative assessment
Olai	-	Oral exposure does not occur as part of the intended product use.
Dormal	small task: 0.1 µg/cm² (-)	
Dermal		Qualitative assessment If risk reduction measures are taken into account no human
	large task: 1 µg/cm² (-)	exposure is expected. However, dermal contact to dust from
		loading of lime substances or direct contact to the lime cannot
		be excluded if no protective gloves are worn during
		application. This may occasionally result in mild irritation
		easily avoided by prompt rinsing with water. Quantitative
		assessment
		The constant rate model of ConsExpo has been used. The
		contact rate to dust formed while pouring powder has been
		taken from the DIY1-fact sheet (RIVM report 320104007).
Eye	Dust	Qualitative assessment
		If risk reduction measures are taken into account no human
		exposure is expected. Dust from loading of the lime
		substances cannot be excluded if no protective goggles are
		used. Prompt rinsing with water and seeking medical advice
		after accidental exposure is advisable.
Inhalation	Small task: 12 μg/m³ (0.003)	Quantitative assessment
	Large task: 120 µg/m³ (0.03)	Dust formation while pouring the powder is addressed by
		using the dutch model (van Hemmen, 1992, as described in
		section 9.0.3.1 above).
Application of liquid	l, pasty lime preparations.	
Route of exposure	Exposure estimate	Method used, comments
Oral	-	Qualitative assessment
		Oral exposure does not occur as part of the intended product use.
Dermal	Splashes	Qualitative assessment
		If risk reduction measures are taken into account no human
		exposure is expected. However, splashes on the skin cannot
		be excluded if no protective gloves are worn during the
		application. Splashes may occasionally result in mild irritation
		easily avoided by immediate rinsing of the hands with water.
Eye	Splashes	Qualitative assessment
		If appropriate goggles are worn no exposure to the eyes needs
		to be expected. However, splashes into the eyes cannot be
		excluded if no protective goggles are worn during the
		application of liquid or pasty lime preparations, especially
		during overhead work. Prompt rinsing with water and seeking
		medical advice after accidental exposure is advisable.
Inhalation	-	Qualitative assessment
		Not expected, as the vapour pressure of limes in water is low and
		generation of mists or aerosols does not take place.
		•

Post-application exposure

No relevant exposure will be assumed as the aqueous lime preparation will quickly convert to calcium carbonate with carbon dioxide from the atmosphere.

Environmental exposure

Referring to the OC/RMMs related to the environment to avoid discharging lime solutions directly into municipal wastewater, the pH of the influent of a municipal wastewater treatment plant is circum-neutral and therefore, there is no exposure to the biological activity. The influent of a municipal wastewater treatment plant is often neutralized anyway and lime may even be used beneficially for pH control of acid wastewater streams that are treated in biological WWTPs. Since the pH of the influent of the municipal treatment plant is circum neutral, the pH impact is negligible on the receiving environmental compartments, such as surface water, sediment and terrestrial compartment.

PUSSI DIJULO QUALITÀ PER L'EDILIZIA

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.13: Consumer use of CO2 absorbent in breathing apparatuses

Exposure Scenario F 1. Title	ormat (2)					
	Offiliat (2)	addressing	uses carried out by	consume	ers	
Free short title			Consumer use of CO ₂ a	absorbent i	n breathing appar	ratuses
Systematic title based of	on use desc	criptor	SU21, PC2, ERC8b			
Processes, tasks activi			Filling of the formulation into the cartridge			
			Use of closed circuit br		oaratuses	
			Cleaning of equipment			
Assessment Method*			Human health		, ,,	
			The inhalation exposure			al and dermal exposure.
			Hemmen, 1992).	c rias beer	assessed by the	Dutch model (van
			Environment			
			A qualitative justification	n assessm	ent is provided.	
2. Operational co	nditions	and risk	management me	asures		
RMM			available in granular form		ore, a defined amo	ount of water (14-
	18%	6) is added w	hich will further reduce	the dustin	ess of the absor	bent. During the
			calcium dihydroxide will	be quickl	y reacting with (CO ₂ to form the
20/520		onate.				
PC/ERC		cription of a egories (ERC		icle categ	ories (AC) and	environmental release
PC 2			<i>)</i> :uit breathing apparatus f	or e.g. reci	eational diving co	entaining enda lime as
F G Z			he breathed air will flow t			
			er and sodium hydroxide			
	carb	onate.				
			can be re-breathed again			
		-	absorbent: The absorbent will be discarded after each use and refilled			
ERC 8b		ore each dive.	adaar waa raayiiina in ina	lucion into	or onto a matrix	
			ndoor use resulting in inc	เนรเงกา แกเง	or onto a matrix	
2.1 Control of co	nsumers	s exposur	е			
Product characteristic						
Description of the preparation		ation of the e in the	Physical state of the preparation	Dustine	ss (if relevant)	Packaging design
preparation	preparation		the preparation			
CO ₂ absorbent	78 - 84%		Solid, granular	Verv lo	w dustiness	
						4.5. 18 kg canister
	Depending	g on the	, 0		n by 10 %	4.5, 18 kg canister
	Depending application		, 3	(reduction		4.5, 18 kg canister
	application componen	the main tale	, 0	(reduction compared Dust	n by 10 % d to powder) formation	4.5, 18 kg canister
	application component different a	the main the has dditives. A		(reduction compared Dust cannot I	n by 10 % d to powder) formation be ruled out	4.5, 18 kg canister
	application component different a specific a	n the main it has dditives. A imount of		(reduction compared Dust cannot I during t	n by 10 % d to powder) formation be ruled out he filling of	4.5, 18 kg canister
	application componen different a specific a water is	n the main the has dditives. A amount of always		(reduction compared Dust cannot I during the	n by 10 % d to powder) formation be ruled out the filling of scrubber	4.5, 18 kg canister
"Used" CO2 absorbent	application component different a specific a	n the main the has dditives. A amount of always	Solid, granular	(reduction compared Dust cannot I during the cartridge	n by 10 % d to powder) formation be ruled out the filling of scrubber	4.5, 18 kg canister 1-3 kg in breathing
"Used" CO ₂ absorbent	application componen different a specific a water is added (14	n the main the has dditives. A amount of always		(reduction compared Dust cannot I during the cartridge Very low	n by 10 % d to powder) formation per uled out the filling of scrubber	-
-	application componen different a specific a water is added (14	n the main the has dditives. A amount of always		(reduction compared Dust cannot If during the cartridge Very low (reduction compared to the cartridge very low (re	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness	1-3 kg in breathing
Amounts used	application componen different a specific a water is added (14 ~ 20%	n the main the has dditives. A amount of always -18%).	Solid, granular	(reduction compared Dust cannot I during the cartridge Very low (reduction compared Dust)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder)	1-3 kg in breathing apparatus
Amounts used CO ₂ -Absorbent used in b	application component different as specific as water is added (14 ~ 20%	n the main that has dditives. A smount of always 18%).		(reduction compared Dust cannot I during the cartridge Very low (reduction compared Dust)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder)	1-3 kg in breathing apparatus
Amounts used CO ₂ -Absorbent used in b Frequency and duration	application component different as specific as water is added (14 ~ 20%	n the main that has dditives. A smount of always 18%).	Solid, granular	(reduction compared Dust cannot I during the cartridge Very low (reduction compared le kind of better the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder)	1-3 kg in breathing apparatus
Amounts used CO ₂ -Absorbent used in b Frequency and duration Description of the task	application component different as specific as water is added (14 ~ 20%	n the main it has idditives. A imount of always -18%).	Solid, granular 1-3 kg depending on the on of exposure per eve	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu	1-3 kg in breathing apparatus
Amounts used CO ₂ -Absorbent used in b Frequency and duratior Description of the task Filling of the formulation i	application component different as specific as water is added (14 ~ 20%	n the main it has idditives. A imount of always -18%).	Solid, granular	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu	1-3 kg in breathing apparatus
Amounts used CO ₂ -Absorbent used in b Frequency and duratior Description of the task Filling of the formulation i cartridge	application component different as specific as water is added (14 ~ 20%) reathing applications of use/expensions applications applications applications are applications.	n the main that has dditives. A amount of always -18%). paratus posure Durati Ca. 1.3	Solid, granular 1-3 kg depending on the on of exposure per eve	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu frequency of e Before each div	1-3 kg in breathing apparatus s vents e (up to 4 times)
Amounts used CO ₂ -Absorbent used in b Frequency and duratior Description of the task Filling of the formulation i cartridge Use of closed circuit brea	application component different as specific as water is added (14 ~ 20%) reathing applications of use/expensions applications applications applications are applications.	n the main it has idditives. A imount of always -18%).	Solid, granular 1-3 kg depending on the on of exposure per eve	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu	1-3 kg in breathing apparatus s vents e (up to 4 times)
Amounts used CO ₂ -Absorbent used in b Frequency and duratior Description of the task Filling of the formulation i cartridge Use of closed circuit brea apparatus	application component different as specific as water is added (14 ~ 20%) reathing application of use/expensions and the string applications are string applications.	n the main it has dditives. A smount of always -18%).	Solid, granular 1-3 kg depending on the on of exposure per even as min per filling, in sum as the solution of	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu frequency of e Before each div	1-3 kg in breathing apparatus s vents e (up to 4 times) day
Amounts used CO ₂ -Absorbent used in b Frequency and duration Description of the task Filling of the formulation i cartridge Use of closed circuit brea apparatus Cleaning and emptying or	application component different as specific as water is added (14 ~ 20%) reathing application of use/expension of use/expens	n the main it has dditives. A smount of always -18%).	Solid, granular 1-3 kg depending on the on of exposure per even as min per filling, in sum with the control of	(reduction compared Dust cannot I during the cartridge Very low (reduction compared e kind of both the cartridge)	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu frequency of e Before each div	1-3 kg in breathing apparatus s vents e (up to 4 times) day
Amounts used CO ₂ -Absorbent used in b Frequency and duratior Description of the task Filling of the formulation i cartridge Use of closed circuit brea apparatus	application component different as specific as water is added (14 ~ 20% reathing application into the athing f equipment specific as water is added (14 ~ 20%	n the main it has dditives. A smount of always -18%).	Solid, granular 1-3 kg depending on the on of exposure per even as min per filling, in sum with the control of	(reduction compared Dust cannot It during the cartridge Very low (reduction compared e kind of both cast) and cast compared to the cartridge c	n by 10 % d to powder) formation per ruled out the filling of scrubber dustiness n by 10 % d to powder) reathing apparatu frequency of e Before each div	1-3 kg in breathing apparatus s vents e (up to 4 times) day

FASSA BORTOLO

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Filling of the formulation into the cartridge	adult	1.25 m³/hr (light working activity)	hands	840 (REACH guidance R.15, men)
Use of closed circuit breathing apparatus			-	-
Cleaning and emptying of equipment			hands	840 (REACH guidance R.15, men)

Other given operational conditions affecting consumers exposure					
Description of the task	Indoor/outdoor	Room volume	Air exchange rate		
Filling of the formulation into the cartridge	NR	NR	NR		
Use of closed circuit breathing apparatus	-	-	-		
Cleaning and emptying of equipment	NR	NR	NR		

Conditions and measures related to information and behavioural advice to consumers

Do not get in eyes, on skin, or on clothing. Do not breathe dust

Keep container tightly closed as to avoid the soda lime to dry out.

Keep out of reach of children.

Wash thoroughly after handling.

In case of contact with eyes, rinse immediately with plenty of water and seek medical

advice. Do not mix with acids.

Carefully read the instructions of the breathing apparatus to assure a proper use of the breathing apparatus.

Conditions and measures related to personal protection and hygiene

Wear suitable gloves, goggles and protective clothes during handling. Use a filtering half mask (mask type FFP2 acc. to EN 149).

2.2 Control of environmental exposure

Product characteristics

Not relevant for exposure assessment

Amounts used*

Not relevant for exposure assessment

Frequency and duration of use

Not relevant for exposure assessment

Environment factors not influenced by risk management

Default river flow and dilution

Other given operational conditions affecting environmental exposure

Indoor

Conditions and measures related to municipal sewage treatment plant

Default size of municipal sewage system/treatment plant and sludge treatment technique

Conditions and measures related to external treatment of waste for disposal

Not relevant for exposure assessment

Conditions and measures related to external recovery of waste

Not relevant for exposure assessment

3. Exposure estimation and reference to its source

The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived noeffect level) and is given in parentheses below. For inhalation exposure, the RCR is based on the acute DNEL for lime substances of 4 mg/m³ (as respirable dust) and the respective inhalation exposure estimate (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction is a sub-fraction of the inhalable fraction according to EN 481. Since lime substances are classified as irritating to skin, and eyes a qualitative assessment has been performed for dermal exposure and exposure to the eye.

Due to the very specialised kind of consumers (divers filling their own CO_2 scrubber) it can be assumed that instructions will be taken into account to reduce exposure

Human exposure

Filling of the formulation into the cartridge

Route of exposure	Exposure estimate	Method used, comments
Oral	-	Qualitative assessment

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 1.2 µg/m³ (3 x 10⁴) Large task: 12 µg/m³ (0.003) Use of closed circuit breathing apparatus Route of exposure Exposure estimate Oral - Qualitative assessment Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye (Qualitative assessment) Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Cy activative assessment Due to the product characteristics, it can be concluded that instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Dubpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that structions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure ose not occur			
Dermal - Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from loading of granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during application. This may occasionally result in mild irritation easily avoided by prompt mining with water. Eye Dust Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Small task: 1.2 µg/m³ (0.003) Large task: 12 µg/m³ (0.003) Darge task: 12 µg/m³ (0.003) Use of closed circuit breathing apparatus Route of exposure Vision of exposure Exposure estimate Oral - Qualitative assessment Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Qualitative assessment Due to the product characteristics and the instructional advices given, it can be concluded that reye exposure to the absorbent in breathing apparatuses is nonexistent. Qualitative assessment Oral exposure exposure exposure to the absorbent in breathing apparatuses is nonexistent. Due to the product characteristics and the instructional advices given, it can be concluded that instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Creaning an			Oral exposure does not occur as part of the intended product
Dermal -			
If risk reduction measures are taken into account no human exposure is expected. However, demail contact to dust from loading of granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during application. This may occasionally result in mild infration easily avoided by prompt rinsing with water. Eye	Dermal	-	
Eye Dust Dust Cualitative assessment Dust formation without payable of exposure is expected. However, dermal contact to the granules cannot be excluded if no protective gloves are worn during application. This may occasionally result in mild irritation easily avoided by prompt mising with water. Eye Dust Qualitative assessment If ink reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 1.2 μg/m³ (0.003) Small task:	50		
trom loading of granular soda lime or direct contact to the granular soda lime or direct contact to the granular soda lime or direct gloves are worn during application. This may occasionally result in mildi rifitation easily avoided by prompt rinsing with water. Eye Dust Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Wevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 12 µg/m³ (3 × 10*) Large task: 12 µg/m³ (0.003) Large task: 12 µg/m³ (0.003) Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Wethod used, comments Qualitative assessment Oral - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Eye Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Eye Qualitative assessment Due to the product characteristics and the instructions within consumers. Proper use of equipment and materials is in their own interest, hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral exposure during the use of the breathing appa			
Eye Dust Dust Cualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Wevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 1.2 µg/m³ (3 × 10 °) Large task: 12 µg/m³ (0.003) Large task: 12 µg/m³ (0.003) Use of closed circuit breathing apparatus Eve of closed circuit breathing apparatus Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Due to the product characteristics, it can be concluded that demail exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Cualitative assessment Inhalation negligible According to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Qualitative assessment Instructional advice is provided to remove any dust before finishing the assessment in the substitution and advice is provided to remove any dust before finishing the assessment in the account. Due to the product characteristics and the instructions will be taken into account. Due to the product characteristics and the instructions will be taken into account. Due to the product characteristics and the instructions advices given it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructions will be taken into account. Due to the product characteristics and the instructions will be taken into account. Due to the product characteristics and the instructions will be taken into account. Due to the product characteristics and the instruction will be taken into account to human expective processor and the product	i		
Eye Dust			granules cannot be excluded if no protective gloves are
Eye Dust Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 1.2 µg/m² (3 x 10°) Large task: 1.2 µg/m² (0.003) Use of closed circuit breathing apparatus Foute of exposure Exposure estimate Oral - Qualitative assessment Oral - Qualitative assessment Oral - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Out of the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Cualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Consciutable represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructional advices given, it can be concluded that instructional interest; hence it can be assumed that instructions will be taken into account to human exposure is expected.			
If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation Small task: 1.2 µg/m³ (0.003) Large task: 12 µg/m³ (0.003) Use of closed circuit breathing apparatus Froute of exposure Exposure estimate Oral - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Gualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Loue to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Due to the product characteristics, it can be concluded that instruction within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that structions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Foral exposure estimate Method used, comments Oral exposure in the first water contact to dust from emptying granular soda l			
exposure is expected, Dust from loading of the granular soda lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation	Eye	Dust	
lime is expected to be minimal, therefore eye exposure will be minimal even without protective goggles. Nevertheless, prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Inhalation			
minimal even without protective goggles. Nevertheless, prompt inising with water and seeking medical advice after accidental exposure is advisable. Inhalation			
Inhalation Small task: 1.2 µg/m³ (3 x 10⁴) Quantitative assessment Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Use of closed circuit breathing apparatus Total table Powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Use of closed circuit breathing apparatus Total table Powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Use of closed circuit breathing apparatus Powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Use of closed circuit breathing apparatus Powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Use of closed circuit breathing apparatus Powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the product characteristics, it can be concluded that demand exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation			
Inhalation			
Inhalation Small task: 1.2 µg/m³ (0.003) Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. Wee of closed circuit breathing apparatus			
Large task: 12 µg/m³ (0.003) Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form. We of closed circuit breathing apparatus Route of exposure Exposure estimate Oral Dermal - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral Dust and splashes Dust and interior of 10 for the granular soda lime or direct contact to the granular soda lime may occur. This may occasionally result in mild irritation easily	Inhalation	Small task: 1.2 µg/m³ (3 × 10 ⁻⁴)	
Use of closed circuit breathing apparatus Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Cleaning and emptying of equipment			
Use of closed circuit breathing apparatus Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Dermal - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure does not occur as part of the intended product use. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Qualitative assessment Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment Oral exposure does not occur as part of the intended product use. Pormal Dust and splashes Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment Oral exposure does not occur as part of the intended product use. Pormal Dust and splashes Qualitative assessment Oral exposure does not occur as part of the intended product use. Cleaning exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granular soda lime may			using the dutch model (van Hemmen, 1992, as described
See of closed circuit breathing apparatus			
Constitute Con			factor of 10 for the granular form.
Qualitative assessment Oral exposure does not occur as part of the intended product use.			
Dermal Oral exposure does not occur as part of the intended product use. Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye Oualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral Dust and splashes Method used, comments Qualitative assessment Oral exposure does not occur as part of the intended product use. Use and splashes If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular sodal lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened sodal lime may occur. This may occasionally result in mild irritation easily	•	Exposure estimate	
Dermal - Qualitative assessment Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Oral	-	
Due to the product characteristics, it can be concluded that dermal exposure to the absorbent in breathing apparatuses is nonexistent. Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation Inhalation Inegligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the carridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation Inegligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral - Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened sodal ime may occur. This may occasionally result in mild irritation easily	Dermal	-	
Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation Inegligible Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular sodal lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened sodal lime may occur. This may occasionally result in mild irritation easily			
Eye - Qualitative assessment Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			, , , , , , , , , , , , , , , , , , , ,
Due to the product characteristics, it can be concluded that eye exposure to the absorbent in breathing apparatuses is nonexistent. Inhalation negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructions will be taken into account advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Eva		
Inhalation negligible negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral Dust and splashes Method used, comments Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Ly c	-	
Inhalation negligible negligible Qualitative assessment Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral Oral Dust and splashes Dermal Dust and splashes Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Instructional advice is provided to remove any dust before finishing the assembly of the scrubber. Divers filling their own CO ₂ scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Oral Oral Dust and splashes Dermal Dust and splashes Qualitative assessment Oral exposure does not occur as part of the intended product use. Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Inhalation	negligible	Qualitative assessment
CO2 scrubber represent a specific subpopulation within consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
consumers. Proper use of equipment and materials is in their own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure			finishing the assembly of the scrubber. Divers filling their own
own interest; hence it can be assumed that instructions will be taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure			
taken into account. Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Due to the product characteristics and the instructional advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure			· ·
advices given, it can be concluded that inhalation exposure to the absorbent during the use of the breathing apparatus is negligible. Cleaning and emptying of equipment Route of exposure Exposure estimate Method used, comments Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Route of exposure Exposure estimate Method used, comments			· ·
Cleaning and emptying of equipment			the absorbent during the use of the breathing apparatus is
Route of exposure Exposure estimate			negligible.
Oral - Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	•	Exposure estimate	
Dermal Dust and splashes Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Oral	-	
If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
exposure is expected. However, dermal contact to dust from emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily	Dermal	Dust and splashes	
emptying granular soda lime or direct contact to the granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
granules cannot be excluded if no protective gloves are worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
worn during cleaning. Furthermore, during the cleaning of the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
the cartridge with water contact to moistened soda lime may occur. This may occasionally result in mild irritation easily			
occur. This may occasionally result in mild irritation easily			
			avoided by immediate rinsing of with water.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

	exposure is expected. However, contact to dust from emptying granular soda limes or during the cleaning of the cartridge with water contact to moisten soda limes may occur in very rare occasions. Prompt rinsing with water and seeking medical advice after accidental exposure is advisable.
Inhalation Small task: 0.3 μg/m³ (7.5 x 10 ⁻⁵) Large task: 3 μg/m³ (7.5 x 10 ⁻⁴) Environmental exposure	Quantitative assessment Dust formation while pouring the powder is addressed by using the Dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form and a factor of 4 to account for the reduced amount of lime in the "used" absorbent.

The pH impact due to use of lime in breathing apparatuses is expected to be negligible. The influent of a municipal wastewater treatment plant is often neutralized anyway and lime may even be used beneficially for pH control of acid wastewater streams that are treated in biological WWTPs. Since the pH of the influent of the municipal treatment plant is circum neutral, the pH impact is negligible on the receiving environmental compartments, such as surface water, sediment and terrestrial compartment.

FS number 9.14: Consumer use of garden lime/fertilizer

			r use or gare			- 1	
Exposure Scenario	Form	at (2) addressing	g uses carried out i	by consumers	3		
1. Title							
Free short title			Consumer use of gain	rden lime/fertilize	er		
Systematic title based	d on us	e descriptor	SU21, PC20, PC12,				
Processes, tasks activities covered			Manual application		ne, fertilizer	Post-	
			application exposure	!			
Assessment Method*			Human health A qualitative assessment has been performed for oral and dermal exposure as well as for the exposure to the eye. The dust exposure has been assessed by the Dutch model (van Hemmen, 1992). Environment A qualitative justification assessment is provided.				
2. Operational cor	nditio	ns and risk ma	nagement meas	ures			
RMM			ated risk management		n place.		
PC/ERC					•	d environmental release	
		categories (ERC) , ,				
PC 20		Surface spreading	g of the garden lime by shovel/hand (worst case) and soil incorporation. Post-				
			sure to playing children.				
PC 12			g of the garden lime by shovel/ hand (worst case) and soil incorporation. Post- sure to playing children.				
ERC 8e		Wide dispersive of	outdoor use of reactive substances in open systems				
2.1 Control of cor	nsume	ers exposure					
Product characteristic	C						
Description of the preparation	subs	centration of the stance in the aration	Physical state of the preparation	Dustiness (if relevant)	Packaging design	
Garden lime 100 %		Solid, powder	cor		Bulk in bags or containers of 5, 10 and 25 kg		
Fertilizer Up to 20 %		Solid, granular	Low dusty		Bulk in bags or containers of 5, 10 and 25 kg		
Amounts used							
Description of the pre	paratio	n	Amount used per event Source of information		information		
Garden lime			100g /m² (up to 200g/m²) Information and direction of u		and direction of use		
Fertilizer			100g /m² (up to 1kg/m² (compost)) Information and direction of use				

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Frequency and duration of use/exposure					
Description of the task	Duration of exposure per event	frequency of events			
Manual application	Minutes-hours Depending on the size of the treated area	1 tasks per year			
Post-application	2 h (toddlers playing on grass (EPA exposure factors handbook)	Relevant for up to 7 days after application			

Human factors not influenced by risk management

Description of the task	Population exposed	Breathing rate	Exposed body part	Corresponding skin area [cm²]	
Manual application	Adult	1.25 m³/hr	Hands and forearms	1900 (DIY fact sheet)	
Post-application	Child/Toddlers	NR	NR	NR	

Other given operational conditions affecting consumers exposure

Description of the task	Indoor/outdoor	Room volume	Air exchange rate
Manual application	outdoor	1 m³ (personal space, small	NR
		area around the user)	
Post-application	outdoor	NR	NR

Conditions and measures related to information and behavioural advice to consumers

Do not get in eyes, on skin, or on clothing. Do not breathe dust. Use a filtering half mask (mask type FFP2 acc. to EN 149). Keep container closed and out of reach of children.

In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Wash thoroughly after handling.

Do not mix with acids and always add limes to water and not water to limes.

Incorporation of the garden lime or fertilizer into the soil with subsequent watering will facilitate the effect.

Conditions and measures related to personal protection and hygiene

Wear suitable gloves, goggles and protection clothes.

2.2 Control of environmental exposure

Product characteristics

Drift: 1 % (very worst-case estimate based on data from dust measurements in air as a function of the distance from application

Amounts used

Amounts useu			
Amount used	Ca(OH)2	2,244 kg/ha	In professional agricultural soil protection, it
	CaO	1,700 kg/ha	is recommended not to exceed 1700 kg
	CaO.MgO	1,478 kg/ha	CaO/ha or the corresponding amount of
	Ca(OH)2.Mg(OH)2	2,030 kg/ha	2244 kg Ca(OH) ₂ /ha. This rate is three times the
	CaCO3.MgO	2,149 kg/ha	amount needed to compensate the annual
	Ca(OH)2.MgO	1,774 kg/ha	losses of lime by leaching. For this reason,
	Natural hydraulic lime	2,420 kg/ha	the value of 1700 kg CaO/ha or the corresponding amount of 2244 kg Ca(OH) ₂ /ha is used in this dossier as the basis for the risk assessment. The amount used for the other lime variants can be calculated based on their composition and the molecular weight.

Frequency and duration of use

1 day/year (one application per year) . Multiple applications during the year are allowed, provided the total yearly amount of 2,420 kg/ha is not exceeded (NHL).

Environment factors not influenced by risk management

Not relevant for exposure assessment

Other given operational conditions affecting environmental exposure

Outdoor use of products Soil mixing depth: 20 cm

Technical conditions and measures at process level (source) to prevent release

There are no direct releases to adjacent surface waters.

Technical conditions and measures to reduce or limit discharges, air emissions and releases to soil

Drift should be minimised.

Conditions and measures related to municipal sewage treatment plant

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Post-application

Revision date: 12/10 Printing Date: 12/10

Not relevant for exposure assessment

Conditions and measures related to external treatment of waste for disposal

Not relevant for exposure assessment

Conditions and measures related to external recovery of waste

Not relevant for exposure assessment

3. Exposure estimation and reference to its source

The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived noeffect level) and is given in parentheses below. For inhalation exposure, the RCR is based on the long-term DNEL for lime substances of 1 mg/m³ (as respirable dust) and the respective inhalation exposure estimate (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction is a sub-fraction of the inhalable fraction according to EN 481. Since lime substances are classified as irritating to skin and eyes a qualitative assessment has been performed for dermal exposure and exposure to the eye.

Human exposure Manual application Route of Method used, comments **Exposure estimate** exposure Oral Qualitative assessment Oral exposure does not occur as part of the intended product use. Dermal Dust, powder Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from application of lime substances or by direct contact to the limes cannot be excluded if no protective gloves are worn during application. Due to the relatively long application time, skin irritation would be expected. This can easily be avoided by immediate rinsing with water. It would be assumed that consumers who had experience of skin irritation will protect themselves. Therefore, any occurring skin irritation, which will be reversible, can be assumed to be non-recurring. Eye Dust Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from surfacing with lime cannot be excluded if no protective goggles are used. Prompt rinsing with water and seeking medical advice after accidental exposure is advisable. Small task: 12 µg/m³ (0.0012) Quantitative assessment Inhalation Large task: 120 µg/m³ (0.012) No model describing the application of powders by (garden lime) shovel/hand is available, therefore, read-across from the dust formation model while pouring powders has been used as a worst case. Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above). Inhalation Small task: 0.24 µg/m³ (2.4 * 10-Quantitative assessment 4) Large task: 2.4 µg/m³ (0.0024) No model describing the application of powders by (fertilizer) shovel/hand is available, therefore, read across from the dust formation model while pouring powders has been used as a worst case. Dust formation while pouring the powder is addressed by using the dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form and a factor of 5 to account for the reduced amount of limes in fertilizer.

FUSSA BURUULU BUALITÀ PER L'EDILIZIA

PRODUCT SAFETY DATA SHEET for NHL

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

According to the PSD (UK Pesticide Safety Directorate, now called CRD) post-application exposure need to be addressed for products which are applied in parks or amateur products used to treat lawns and plants grown in private gardens. In this case exposure of children, who may have access to these areas soon after treatment, needs to be assessed. The US EPA model predicts the post-application exposure to products used in private gardens (e.g. lawns) by toddlers crawling on the treated area and also via the oral route through hand-to-mouth activities.

Garden lime or fertilizer including lime is used to treat acidic soil. Therefore, after application to the soil and subsequent watering the hazard driving effect of lime (alkalinity) will be quickly neutralized. Exposure to lime substances will be negligible within a short time after application.

Environmental exposure

No quantitative environmental exposure assessment is carried out because the operational conditions and risk management measures for consumer use are less stringent than those outlined for professional agricultural soil protection. Moreover, the neutralisation/pH-effect is the intended and desired effect in the soil compartment. Releases to wastewater are not expected.

ES number 9.15: Consumer use of lime substances as water treatment chemicals

Exposure Scenario	Forma	t (2) addressing	uses carried out by	/ consumers		
1. Title						
Free short title			Consumer use of lime substances as water treatment chemicals			
Systematic title based	on use	descriptor	SU21, PC20, PC37, E			
Processes, tasks activities covered			Loading, filling or re-fillime milk Application of lime mil	lling of solid formulations into k to water	container/preparation of	
Assessment Method*			exposure as well as for assessed by the Dutch Environment: A qualitative justification	A qualitative assessment has been performed for oral and dermal exposure as well as for exposure of the eye. Dust exposure has been assessed by the Dutch model (van Hemmen, 1992).		
2. Operational co	onditi					
RMM				ement measures are in place		
PC/ERC		categories (ERC)	ticle categories (AC) and		
Transfer of lime s			g (transfer of lime substances (solid)) of lime reactor for water treatment. ubstances (solid) into container for further application. tion of lime milk to water.			
ERC 8b		Wide dispersive in	ndoor use of reactive substances in open systems			
2.1 Control of co		ners exposur	е			
Product characteristic						
Description of the preparation	subs	centration of the tance in the aration	Physical state of the preparation	Dustiness (if relevant)	Packaging design	
Water treatment chemical	Up to	100 %	Solid, fine powder	high dustiness (indicative value from DIY fact sheet see section 9.0.3)	Bulk in bags or buckets/containers.	
Water treatment Up to 99 % chemical		Solid, granular of different size (D50 value 0.7 D50 value 1.75 D50 value 3.08)	low dustiness (reduction by 10% compared to powder)	Bulk-tank lorry or in "Big Bags" or in sacks		
Amounts used						
Description of the prep			Amount used per ev			
Water treatment chemic aquaria	al in lim	e reactor for	, ,	of the water reactor to be fill		
Water treatment chemic drinking water	al in lim	e reactor for	depending on the size of the water reactor to be filled (~up to 1.2 kg/L)			

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Lime milk for further application			~ 20 g / 5L			
Frequency and duratio	n of use/exposul	re				
Description of task		Duration of exposure per event		frequency of events		
Preparation of lime milk (loading, filling and refilling)		1.33 min (DIY-fact sheet, RIVM, Chapter 2.4.2 Mixing and loading of powders)		1 task/month 1task/week		
Dropwise application of lime milk to water		Several minutes - hours		1 tasks/ month		
Human factors not influenced by risk management						
Description of the task	Population exp	osed	Breathing rate	Expos	sed body part	Corresponding skin area [cm²]
Preparation of lime milk (loading, filling and refilling)	adult		1.25 m³/hr	Half of	both hands	430 (RIVM report 320104007)
Dropwise application of lime milk to water	adult		NR	Hands	•	860 (RIVM report 320104007)
Other given operationa	I conditions affe	cting c	onsumers exposure			

Preparation of lime milk (loading,	Indoor/outdoor	1 m³ (personal space, small	0.6 hr ⁻¹ (unspecified room
filling and refilling)		area around the user)	indoor)
Dropwise application of lime milk	indoor	NR	NR
to water			

Room volume

Air exchange rate

Conditions and measures related to information and behavioural advice to consumers

Indoor/outdoor

Do not get in eyes, on skin, or on clothing. Do not breathe

dust Keep container closed and out of reach of children.

Use only with adequate ventilation.

In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Wash thoroughly after handling.

Do not mix with acids and always add limes to water and not water to limes.

Conditions and measures related to personal protection and hygiene

Wear suitable gloves, goggles and protective clothes. Use a filtering half mask (mask type FFP2 acc. to EN 149).

2.2 Control of environmental exposure

Product characteristics

Description of the task

Not relevant for exposure assessment

Amounts used*

Not relevant for exposure assessment

Frequency and duration of use

Not relevant for exposure assessment

Environment factors not influenced by risk management

Default river flow and dilution

Other given operational conditions affecting environmental exposure

Indoor

Conditions and measures related to municipal sewage treatment plant

Default size of municipal sewage system/treatment plant and sludge treatment technique

Conditions and measures related to external treatment of waste for disposal

Not relevant for exposure assessment

Conditions and measures related to external recovery of waste

Not relevant for exposure assessment

3. Exposure estimation and reference to its source

The risk characterisation ratio (RCR) is the quotient of the refined exposure estimate and the respective DNEL (derived noeffect level) and is given in parentheses below. For inhalation exposure, the RCR is based on the acute DNEL for lime substances of 4 mg/m³ (as respirable dust) and the respective inhalation exposure estimate (as inhalable dust). Thus, the RCR includes an additional safety margin since the respirable fraction is a sub-fraction of the inhalable fraction according to EN 481. Since lime substances are classified as irritating to skin and eyes a qualitative assessment has been performed for dermal exposure and exposure to the eye.

Human exposure

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

Preparation of lime milk (loading)					
Route of exposure	Exposure estimate	Method used, comments			
Oral	-	Qualitative assessment Oral exposure does not occur as part of the intended product use.			
Dermal (powder)	small task: 0.1 μg/cm ² (-) large task: 1 μg/cm ² (-)	Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, dermal contact to dust from loading of limes or direct contact to the lime cannot be excluded if no protective gloves are worn during application. This may occasionally result in mild irritation easily avoided by prompt rinsing with water. Quantitative assessment The constant rate model of ConsExpo has been used. The contact rate to dust formed while pouring powder has been taken from the DIY-fact sheet (RIVM report 320104007). For granules the exposure estimate will be even lower.			
Eye	Dust	Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. Dust from loading of the limes cannot be excluded if no protective goggles are used. Prompt rinsing with water and seeking medical advice after accidental exposure is advisable.			
Inhalation (powder)	Small task: 12 μg/m³ (0.003) Large task: 120 μg/m³ (0.03)	Quantitative assessment Dust formation while pouring the powder is addressed by using the Dutch model (van Hemmen, 1992, as described in section 9.0.3.1 above).			
Inhalation (granules)	Small task: 1.2 μg/m³ (0.0003) Large task: 12 μg/m³ (0.003)	Quantitative assessment Dust formation while pouring the powder is addressed by using the Dutch model (van Hemmen, 1992 as described in section 9.0.3.1 above) and applying a dust reduction factor of 10 for the granular form.			
Dropwise application	on of lime milk to water				
Route of exposure	Exposure estimate	Method used, comments			
Oral	-	Qualitative assessment Oral exposure does not occur as part of the intended product use.			
Dermal	Droplets or splashes	Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, splashes on the skin cannot be excluded if no protective gloves are worn during application. Splashes may occasionally result in mild irritation easily avoided by immediate rinsing of the hands in water.			
Eye	Droplets or splashes	Qualitative assessment If risk reduction measures are taken into account no human exposure is expected. However, splashes into the eyes cannot be excluded if no protective goggles are worn during the application. However, it is rare for eye irritation to occur as a result of exposure to a clear solution of calcium hydroxide (lime water) and mild irritation can easily be avoided by immediate rinsing of the eyes with water.			
Inhalation	-	Qualitative assessment Not expected, as the vapour pressure of limes in water is low and generation of mists or aerosols does not take place.			

Environmental exposure

The pH impact due to use of lime in cosmetics is expected to be negligible. The influent of a municipal wastewater treatment plant is often neutralized anyway and lime may even be used beneficially for pH control of acid wastewater streams that are treated in biological WWTPs. Since the pH of the influent of the municipal treatment plant is circum neutral, the pH impact is negligible on the receiving environmental compartments, such as surface water, sediment and terrestrial compartment.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

ES number 9.16: Consumer use of cosmetics containing lime

substances						
Exposure Scenario Format (2) addressing	uses carried out by consumers					
1. Title						
Free short title	Consumer use of cosmetics containing limes					
Systematic title based on use descriptor	SU21, PC39, ERC8a					
Processes, tasks activities covered	-					
Assessment Method*	Human health: According to Article 14(5) (b) of regulation (EC) 1907/2006 risks to human health need not be considered for substances included in cosmetic products within the scope of Directive 76/768/EC. Environment A qualitative justification assessment is provided.					
2. Operational conditions and risk ma						
ERC 8a Wide dispersive in	ndoor use of processing aids in open systems					
2.1 Control of consumers exposure						
Product characteristic						
Not relevant, as the risk to human health from this	use does not need to be considered.					
Amounts used						
Not relevant, as the risk to human health from this	Not relevant, as the risk to human health from this use does not need to be considered.					
Frequency and duration of use/exposure						
Not relevant, as the risk to human health from this use does not need to be considered.						
Human factors not influenced by risk management						
Not relevant, as the risk to human health from this use does not need to be considered.						
Other given operational conditions affecting consumers exposure						
Not relevant, as the risk to human health from this use does not need to be considered.						
Conditions and measures related to information and behavioural advice to consumers						
Not relevant, as the risk to human health from this use does not need to be considered.						
Conditions and measures related to personal protection and hygiene						
Not relevant, as the risk to human health from this use does not need to be considered.						
2.2 Control of environmental exposure						
Product characteristics						
Not relevant for exposure assessment						
Amounts used*						
Not relevant for exposure assessment						
Frequency and duration of use						
Not relevant for exposure assessment						
Environment factors not influenced by risk man	nagement					
Default river flow and dilution						
Other given operational conditions affecting en	vironmental exposure					
Indoor						
Conditions and measures related to municipal sewage treatment plant Default size of municipal sewage system/treatment plant and sludge treatment technique						
Conditions and measures related to external tr	eatment of waste for disposal					
Not relevant for exposure assessment						

Conditions and measures related to external recovery of waste

Not relevant for exposure assessment

Exposure estimation and reference to its source

Human exposure

Human exposure to cosmetics will be addressed by other legislation and therefore need not be addressed under regulation (EC) 1907/2006 according to Article 14(5) (b) of this regulation.

Environmental exposure

The pH impact due to use of lime in cosmetics is expected to be negligible. The influent of a municipal wastewater treatment plant is often neutralized anyway and lime may even be used beneficially for pH control of acid wastewater streams that are treated in biological WWTPs. Since the pH of the influent of the municipal treatment plant is circum

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2010

Version: 1.0/EN

Revision date: 12/10 Printing Date: 12/10

neutral, the pH impact is negligible on the receiving environmental compartments, such as surface water, sediment and terrestrial compartment.

End of the safety data sheet